
Introduction

Ádám T. Kocsis (adam.kocsis@fau.de)

2025-10-07: Computers in Geosciences

Schedule

Monday Tuesday Wednesday Thursday Friday

Instructor
Chris and

Sebastian
Adam

Adam and

Wolfgang
Adam Adam

Morning

9:30-12:00 9:00-11:00

11:00 – 12:00

Msc Welcome

event @

GeoZentrum!

9:00 – 16:00 9:00-12:00 9:00-12:00

Afternoon

13:00-16:00 13:00-16:00 13:00-16:00

(Wolfgang)

13:00-16:00 13:00-16:00

https://tinyurl.com/ywwwxmey

Objectives

1. Experience with raster and vector graphics

2. Better understand programming and FOSS

3. Execute, understand, and modify R scripts

4. Write basic R code, see the capabilities

5. Essentials of the BASH Shell/Language

Discussions

1. What do we/you use computers for?

Discussions

1. What do we/you use computers for?

2. In (geo)sciences what do you use computers

for? What kind of software?

Discussions

1. What do we/you use computers for?

2. In (geo)sciences what do you use computers

for? What kind of software?

Presentation

Publishing, Typesetting

Multimedia consumption

Internet Browsing

Email, Communication

Graphics Vector, Raster, 3D

Software Development

Data Processing/Analysis

Statistical Analysis and Modelling

Computation

GIS

Web Design

File management

Files and directories

The practical point of view

(Almost) everything that you work on is in a file.

Avoid this!

Solution: hierarchy

⚫ Regular file: cannot contain other files

⚫ Directory: special file, does not store

anything but other files (can be

empty)

⚫ Directories do not actually contain

data, this is just an abstract

representation, just references to other

files

⚫ Copying vs Moving (renaming) speed

difference!

The file’s path

Absolute path

Path of working directory

The file’s path

Note: Things are easier if this does not have any

spaces!

Path of working directory

No Spaces?

⚫ Systematic rules to represent text with one word

⚫ Variable/Object names - Language dependent conventions

The file’s extension

a)The file extension indicates to the operating

system (and you!) how to handle the file.

Extension

Name

b) This is not a hard constraint! Changing the

extension will not make the file’s contents

different in any way!

Files don’t need to have an extension!

Windows - files

⚫ Files are data items on storage devices

⚫ Multiple roots e.g. C:, each correspond to a

partition

⚫ Paths use the characteristic backslash \

character to depict nestedness

⚫ Directories are called “Folders”

⚫ Executables: filename.exe

⚫ Total path to “Branding”:

⚫ C:\Windows\Branding

⚫ Case insensitive!

⚫ FAT32 and NTFS

Windows - files

⚫ Paths Always present, if you don’t see it

⚫ To make the directory hierarchy novice-friendly, Windows

creates “aliases” that look nice, but are not functional!

⚫ User’s home directory is by default: C:\Users\<Username>\

⚫ Desktop: C:\Users\<Username>\Desktop

⚫ The program to view files is “Explorer.exe”

UNIX File system

⚫ Shared for UNIX and UNIX-like systems
(GNU/Linux, macOS, Android)

⚫ More abstract: everything in the computer is
represented by a file

⚫ ~ Standard directory names

⚫ Nestedness coded with forward slash : /

⚫ File can be anything

⚫ Executables don’t have extensions

⚫ Complete path to “bar”

⚫ /home/mthomas/class_stuff/bar

⚫ Case sensitive!

Archives

Excellent for storing and transmitting files – entire directory structures

Two processes:

a) creating an archive: one file from multiple files

b) employing lossless compression: algorithm to make decrease
the size of a file

Examples: zip, rar, gzip, bzip2, tgz (e.g. .tar.gz)

Compression is everywhere!

- Often part of I/O (input/output)

- Multimedia (codecs)

Exercise

⚫ Go to this page

⚫ Download data.zip

⚫ Uncompress the file!

⚫ Copy contents into a new directory (e.g. day_1) in this

class’ directory!

Hints and tips for file management

⚫ Keep all your stuff together (separate partition!)

⚫ Logical hierarchy

⚫ Make it portable (Windows!)

⚫ Regularly spend time on organizing and cleaning files

⚫ Naming and grouping: self-explanatory – make it for

somebody else (you!)

⚫ Avoid spaces in paths

⚫ Cloud backups!

Novice- vs Expert-friendly tools

No program is perfectly user-friendly! Depending on the task at hand:

Novice-friendly Expert-friendly

- Graphical User Interface (GUI)

- No or very basic training

- Quick learning

- Lower final efficiency

- Visually appealing

- Command Line Interpreter (CLI) or

Text-based interface

- Education/training is necessary

- Eventually higher efficiency

- Visuals: usually invisible!

- Programmable

Working with text is essential

Recommendation: get a code editor!

https://code.visualstudio.com/

Working with text is essential

Recommendation: learn to touch type, if you don’t know

Loads of resources available online!

e.g. https://keybr.com

Enter data < Write instructions

R consolidation course!

https://keybr.com/

Why text? Universal language

⚫ Easy to connect processes / programs

text text

Why text? Text is actually numbers

Perfect balance between simplicity and complexity

⚫ Text can be represented with numbers, e.g. ASCII:

https://www.ascii-code.com/

Binary code: 0 and 1

https://www.ascii-code.com/

Why binary?

Simplest way to record information

⚫ As type of data: True: (1) and False (0)

⚫ Basis of scientific hypothesis testing – Hypothesis is a

statement about reality, that can be answered with true

or false. e.g.

⚫ It is raining outside. (TRUE/FALSE?)

⚫ Boolean Algebra (Logic)

⚫ Easy to make machines the process information

George Boole

Boolean algebra

George BooleInput 1 Input 2 operation Result

True True AND (&) True

True False AND (&) False

False True AND (&) False

False False AND (&) False

The logical AND operation

A: True

B: False

A & B = ?

Boolean algebra

George BooleInput 1 Input 2 operation Result

True True OR (|) True

True False OR (|) True

False True OR (|) True

False False OR (I) False

The logical OR operation

A: True

B: False

A | B = ?

Boolean algebra

George BooleInput 1 Input 2 operation Result

True True OR (|) True

True False OR (|) True

False True OR (|) True

False False OR (I) False

The logical OR operation

A: True

B: False

A | B = ?

C: True

(A & B) | C = ?

Boolean algebra

George BooleInput 1 operation Result

True NOT (!) False

False NOT (!) True

The logical NOT operation

A: True

!A = ?

B: True

C: True

!(A & B) | C = ?

Digital vs Analogue information

Used to build up elementary

building blocks of computers

Computing and programming

• The concept of calculation: how much

is 651/7?

You have 651 balls.

1. You go through them one-by one.

2. You put every 7th ball in a bin.

3. After done, count the balls. (divisor)

• The concept of calculation: how much

is 651/7?

You have 651 balls.

1. You go through them one-by one.

2. You put every 7th ball in a bin.

3. After done, count the balls. (divisor)

• You can do this with electricity

Computing and programming

Logic Gates

George Boole

Boolean algebra is relatively simple to implement with physics

True: Electricity!

False: No electricity.

https://www.youtube.com/watch?v=_ldfWkZgX1Y

Logic Gates

Used to build up elementary building blocks of computers

https://en.wikipedia.org/wiki/MOSFET

Transistors...

• The concept of calculation: how much is

651/7?

You have 651 balls.

1. You go through them one-by one.

2. You put every 7th ball in a bin.

3. After done, count the balls. (divisor)

• You can do this with electricity

• Use instructions to define a machine that

calculates numbers that represent

something else (programmable computer)

https://www.youtube.com/shorts/i2k6jHHzK4s

Computing and programming

Building up more complex things

Data

Instructions

Where

calculations

happen

Very fast

access

memory

Structured text data types

List of entries

• The simplest thing ever

• Convention is to use .txt

• Entries are separated by

new lines

• coral_genera.txt

Structured text data types

(csv) Comma-Separated Values

• Frequently used to represent tabular data

• Rows in lines

• Values separated by commas
• Example: corals.csv

Some structured text “languages”

(csv) Comma-Separated Values (variants)

• Separator can be different - e.g. semicolon (;) or white-

space (\t, \s)

• Semicolon-separated example: stages.csv

• Tab-delimited: penguins.tab

Structured text data types

(JSON) JavaScript Object Notation

• Text-based format of key-value

pairs

{

“firstname”: “Adam”,

“lastname”: “Kocsis

}

Structured text data files

(JSON) JavaScript Object Notation

• Text-based format of key-value

pairs

• Allows hierarchical structuring,

multiple values/keys (‘array’)

• Can be made complicated, but

very straightforward

Structured text data files

(YAML) Yet Another Markup Language

• Similar Text-based

format that allows

hierarchical structuring

• Key-value pairs

• Similar to JSON

Structured text data files

HTML (Hypertext Markup Language)

• Used to structure webpages,

based on ‘tags’

• Also used for interface

development

CSS (Cascading Style Sheets)

• Adding formatting

to webpages

Structured text data files

XML (eXtensible Markup Language)

• Storing Arbitrary Data

• Very similar to HTML

• Many file formats are based on this

(OOXML, e.g. MS Office)

Structured text data files

TeX/LaTeX

• Markup language for

typesetting documents

(e.g. creating .pdf files)

• LaTeX is a generalized

implementation

• Excellent for mathematical

expressions

Programs: MikTex, Tex Live

Structured text data files

Markdown

• Developed for easier web development

• Very clean and easy syntax

• Frequently used in ‘literate programming’*

• Various flavors (e.g. R-markdown)

*Methodology that combines programming with a documentation language

Free & Open Source Software

Ádám T. Kocsis (adam.kocsis@fau.de)

How are application software built?

The source code

⚫ Human-readable

⚫ A language of some

sort

How are application software built?

The building process (sensu lato compilation)

⚫ Translate the source code

to executable

⚫ One way deal, i.e.

irreversible process – the

exact source code cannot

be recreated!

How are application software built?

Result: binary executable

⚫ Modification is limited

⚫ What the program does is

cryptic (almost black box)

⚫ Specific to Operating

System and Architecture!

Free and Open Source Software?

Result

⚫ You don’t need to use binaries from the

authors (no charge or restrictions)

⚫ You can modify the program’s behavior

⚫ You can see what the program does

Original paradigm

Software only for specific hardware!

⚫ No transferability

⚫ Apple still does this

Same Hardware → Different Software

⚫ Proprietary operating systems

⚫ Expensive, opaque

⚫ UNIX (1969, AT&T Bell Labs)

Ken Thompson and

Dennis Ritchie

A Free operating system?

⚫ @MIT: GNU is Not UNIX (1983)

⚫ Unix-like OS: Modular design

⚫ do one thing, but very good!

⚫ Hundreds of software (including

R!!)

⚫ Works well with other open

source software

Richard Stallman

The Kernel

⚫ The most important package of

the OS, is built around this:

Windows uses NT, MacOS:

Darwin

⚫ Handles hardware resources

⚫ Original plans for GNU: Hurd

⚫ 1991 Linux by Linus Torvalds

The Desktop Environment

Gnome KDE

XFCE Unity

Pantheon

Budgie

Package management

Primary

Distribution

Debian Arch Red Hat

Manager

Program

dpkg/apt pacman Re

Package

extension

.deb (AUR) .rpm

⚫ You can build programs yourself, but it is easier to use

pre-built ones

⚫ Most important/prevalent ones

The Phylogeny

https://en.wikipedia.org/wiki/Linux_distribution#/media/File:202

3_Linux_Distributions_Timeline.svg

Try them!
In virtual computers...

https://www.youtube.com/watch?v=v1JVqd8M3Yc

Inkscape

Vector graphics

GIMP

Raster graphics editor

Scribus

Publishing (InDesign)

Blender

3D Graphics, Modelling, Shading,

Animation, Rendering

QGIS

Open source GIS

GPlates

Plate tectonic reconstructions

Audacity

Sound and music editor

Office

Open source

Hundreds of command line tools, e.g.

Multimedia:

Images:

Compiler:

Document conversion:

