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DeepDive – Estimation of diversity 
trajectories using deep learning
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Benton 2007 Palaeontology

What are the mechanisms controlling biodiversity?
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Estimating biodiversity through time

Is there a limit to biodiversity?

Does biodiversity increase over time?
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Bayesian estimation of diversity trajectories – mcmcDivE
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What true diversity could 
have generated the 
observed fossil record?
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Flannery-Sutherland et al. 2022 Nature Comm
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Available methods are based on rarefaction 
or simple models assuming random sampling

Estimating biodiversity through time from fossil data

35 30 25 20 15 10 5 0
0

20

40

60

80

100

Time (Ma)

D
ive

rs
ity

Observed vs true diversity through time

Non-random biases at taxonomic, 
temporal, and spatial scales 😱

Alroy 2010 Science; Starrfelt & Liow 2016 Phil Trans B; Flannery-Sutherland et al. 2022 Nature Comm

Evidence of past biodiversity in the fossil record
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Niklas et al. 1983 Nature; Sepkoski 1981 Paleobiology

Inferring biodiversity dynamics from the fossil record
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Spatial biases make global biodiversity patterns 
unidentifiable using the current methods 

royalsocietypublishing.org/journal/rspb
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There is no consensus about how terrestrial biodiversity was assembled
through deep time, and in particular whether it has risen exponentially over
the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that
the spatial extent of the worldwide terrestrial tetrapod fossil record itself
expands exponentially through the Phanerozoic. Changes in spatial sampling
explain up to 67% of the change in known fossil species counts, and these
changes are decoupled from variation in habitable land area that existed
through time. Spatial sampling therefore represents a real and profound
sampling bias that cannot be explained as redundancy. To address this bias,
we estimate terrestrial tetrapod diversity for palaeogeographical regions of
approximately equal size. We find that regional-scale diversity was con-
strained over timespans of tens to hundreds of millions of years, and similar
patterns are recovered for major subgroups, such as dinosaurs, mammals
and squamates. Although the Cretaceous/Palaeogene mass extinction cata-
lysed an abrupt two- to three-fold increase in regional diversity 66 million
years ago, no further increases occurred, and recent levels of regional diversity
do not exceed those of the Palaeogene. These results parallel those recovered in
analyses of local community-level richness. Taken together, our findings
strongly contradict past studies that suggested unbounded diversity increases
at local and regional scales over the last 100 million years.

1. Introduction
Life on land today is spectacularly diverse, accounting for 75–85% of all species
[1,2]. Understanding how terrestrial diversity was assembled through deep
time is crucial for settling fundamental debates about the diversification pro-
cess, such as whether it is constrained by ecological limits [3,4]. However,
there is no consensus about the long-term trajectory of terrestrial diversity––
in particular, whether or not exponential increases occured through the
Phanerozoic, leading to diversity being higher today at local, regional and
global scales than at any point in the geological past [3,5–11].

Tetrapods today comprise greater than 30 000 extant species and includemany
of the most iconic and intensely studied groups of animals. Curves of global
Phanerozoic tetrapod palaeodiversity have been widely used as exemplars of

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

Problems in estimating biodiversity through time from fossil data

Alroy 2010 Science; Starrfelt & Liow 2016 Phil Trans B; Flannery-Sutherland et al. 2022 Nature Comm
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DeepDive: deep learning estimation of biodiversity through 
time from fossil data

R Cooper github.com/DeepDive-project
Cooper et al. 2024 Nature Comms

Application note: Cooper et al. 2024 bioRxiv

Input: fossil distribution in 
space and time

y3
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y1x1

x2

x3

Output: diversity estimates 
through time

B Allen
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DeepDive – Deep learning models to estimate Diversity trajectories 

Mechanistic model of species diversification and 
extinction in time and space

Clade evolution based on  
spatially-explicit birth-death 

processes

Simulated fossil data with 
spatial, temporal, and 

taxonomic biases
Fossilization and 
sampling simulator

Biodiversity simulator
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Mechanistic model of species diversification and 
extinction in time and space

Clade evolution based on  
spatially-explicit birth-death 

processes

Simulated fossil data with 
spatial, temporal, and 

taxonomic biases

DeepDive – Deep learning models to estimate Diversity trajectories 

True diversity 
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github.com/DeepDive-project

Fossilization and 
sampling simulator

Biodiversity simulator
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True diversity 

Time
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Supervised deep learning models to estimate diversity trajectories 

Mechanistic models of speciation, extinction, and 
fossilization in time and space

github.com/DeepDive-project

Fossilization and 
sampling simulator

Biodiversity simulator

Deep learning model predicting diversity 
time series from fossil features

x1 x2 x3

y1 y2 y3

x4 x5

y4 y5

Predicted diversity

Time

Fossil
features

Estimated
diversity

RNN
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Model optimization (training) and validation

x1 x2 x3

y1 y2 y3

x4 x5

y4 y5

Time

Fossil
features

Estimated
diversity

RNN
Samples from ‘prior’ 
distributions of speciation, 
extinction, migration, 
preservation rates

github.com/DeepDive-project

DeepDive – Deep learning models to estimate Diversity trajectories 
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DeepDive performance
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Strong temporal bias

SQSDeepDive

100fold 
sampling rate 
variation 
through time

Strong taxonomic bias

SQSDeepDive

1–3 orders of 
magnitudes in 
sampling rate 
variation across 
species

Strong spatial bias

SQSDeepDive

100fold 
sampling rate 
variation across 
areas
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DeepDive – Predictions of empirical data

x1 x2 x3

y1 y2 y3

x4 x5

y4 y5

Time

Fossil
features

Estimated
diversity

RNN

Fossil record in 
space and time

Time



Daniele Silvestro – 2024 16

Caveat: the training simulations must resemble the true data

Observed (training) range

Interpolation

Extrapolation
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Checking that the simulations are in the right ballpark
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Test accuracy
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2 Empirical features

Checking that the simulations are in the right ballpark
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Sampled diversity 
(fossil record)
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The rise and fall of elephants 
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10 fold diversity 
decrease in less than

1 million years

Present diversity (3 spp)
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Cooper et al. 2024 Nature Comms
github.com/DeepDive-project

R Cooper
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A new palm fossil database

Image from Lim et al 2021 GEB

>2000 records from 1300 references

>400 verified micro- and macro-fossil occurrences

Cretaceous and Cenozoic localities from all continents 

How did palms diversify through time?

Rosane Collevatti
Carina Hoorn
Huasheng Huang
Viktoria KellerC. D. Bacon

Luis Palazzesi
Shalani Parmar
Vandana Prasad
David Sunderlin

Kelly Matsunaga
Robert Morley
Yaowu Xing

A team (ongoing) effort
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The inferred palm evolutionary trajectory  
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Diversity peaks around the 
Paleocene–Eocene Thermal Maximum

By the end Cretaceous the 
inferred diversity reaches 
today’s levels 

40% decline since the middle Miocene
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Parallel simulations 

CPU
CPU
CPU
CPU

Fossil table and 
config preparation

DeepDiveR DeepDive

github.com/DeepDive-project

How DeepDive works

Simulations settings can 
be adjusted manually but 

are otherwise automatically 
calibrated to match the 

empirical data
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Parallel simulations 

CPU
CPU
CPU
CPU

Model training

GPUGPUGPUGPU

Fossil table and 
config preparation Predictions

DeepDiveR DeepDive

github.com/DeepDive-project

How DeepDive works
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Parse fossil table and 
prepare config file

Setting up an analysis using DeepDiveR

Taxon Area MinAge MaxAge Locality
Ailurus Asia 0.6 1.3 loc_1
Ailurus Asia
 9.5 10.35 loc_2

Alopecocyon Asia 9.5 10.35 loc_2
Alopecocyon Europe 9.7 11.11 loc_3

… … … … …

Fossil occurrence data 
with taxonomic, temporal 
and spatial info

Define timelines and 
number of age 
randomizations
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Parse fossil table and 
prepare config file

Setting up an analysis using DeepDiveR

Taxon Area MinAge MaxAge Locality
Ailurus Asia 0.6 1.3 loc_1
Ailurus Asia
 9.5 10.35 loc_2

Alopecocyon Asia 9.5 10.35 loc_2
Alopecocyon Europe 9.7 11.11 loc_3

… … … … …

Fossil occurrence data 
with taxonomic, temporal 
and spatial info

Include present 
diversity (if applicable)
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Conditioning on present diversity

Extant clades Extinct clades
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Adding biogeographic 
information

(timing and availability 
of areas)

Setting up an analysis using DeepDiveR

e.g. make Antartica inhabitable 
after ice sheet forms
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Running a DeepDive analysis from config

Parallel simulations 

CPU
CPU
CPU
CPU

Model training

GPUGPUGPUGPU

Predictions

Run in an interactive 
Python console
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Running a DeepDive analysis from config

Parallel simulations 

CPU
CPU
CPU
CPU

Model training

GPUGPUGPUGPU

Predictions

Or execute as a 
command-line program 
from a Terminal window
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https://github.com/decoding-the-past/decoding_the_past/

Parallel simulations 

CPU
CPU
CPU
CPU

Model training

GPUGPUGPUGPU

Predictions

Check out our tutorials on Github
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Optimization of a NN model

Under-fitting Over-fittingJust right

A maximum likelihood optimization of an NN would inevitably 
lead to over-fitting because NNs are over-parameterized
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Optimization of a NN model
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In machine learning a separate validation set is used to 
stop the optimization process before it starts overfitting

Overfitting

Learning features that are 
specific to the training set 

resulting in higher validation 
error
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Optimization of a NN model
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Optimization should stop here 
Weights that best fit the validation set

In machine learning a separate validation set is used to 
stop the optimization process before it starts overfitting
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DeepDive results

Output files:

• A trained model (Keras model) 
• Model accuracy (test set) 
• Empirical predictions (CSV and PDF) 
• Simulated vs empirical features (PDF plots)


