Speciatin and extinction rates
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So many flavors of the birth-death model...

Couldn't we have one model that does it all?

Well, perhaps we can... o,
(but let’s talk about neural nets first)
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Lineage-specifi
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Time-dependent and trait-dependent BDNN model
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The model can include (continuous and discrete) traits and allows for species-specific rates
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Time-dependent and trait-dependent BDNN model
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Bayesian (unsupervised) estimation of speciation and extinction rates from fossils

Fossil record
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A birth-death neural network model of speciation and extinction

Fossil record
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A birth-death neural network model of speciation and extinction

Fossil record
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Unsupervised Bayesian neural networks and xAl to infer factors governing diversification

1. Predictors 2. Transformation

Spl Sp2 Sp3 Spd4 SpS

m m MMM

Rate

MCMC proposal

Prior/\i\




Unsupervised Bayesian neural networks and xAl to infer factors governing diversification

1. Predictors 2 Transformation 3. Likelihood
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Unsupervised Bayesian neural networks and xAl to infer factors governing diversification
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Unsupervised Bayesian neural networks and xAl to infer factors governing diversification
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Unsupervised Bayesian neural networks and xAl to infer factors governing diversification

Infer BDNN

Coefficient of rate variation

Plot effects

e

Decrease Predictor identification

, _ Consistency
model fit Effect size

effect

Trlopsr2ops Trlper Tr2per §

*




Should we dig deeper into factors”? Threshold for variation in species-specific rates

Coefficient of rate variation
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Should we dig deeper into factors”? Threshold for variation in species-specific rates
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Should we dig deeper into factors”? Threshold for variation in species-specific rates

Coefficient of rate variation

Simulate_ o Infer Variation in 100x simulations
constant diversification BpNN species-specific
and traits rates

Rate

Time Species CV Rates




Should we dig deeper into factors”? Threshold for variation in species-specific rates
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Should we dig deeper into factors”? Threshold for variation in species-specific rates

Coefficient of rate variation

Simulate
constant diversification
and traits

Time

In
BD

Empirical Rate

Species

fer variation in — 100x simulations?"
NN SPECIES-SPECITIC {5 get threshold f
rates

—

CV Rates
5% false positives

Species




Visualize effect on rates
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Visualize effect on rates
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Visualize effect on rates
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Visualize effect on rates
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Visualize effect on rates
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ldentify rate predictors with consensus among xAl approaches
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XAl: Consistency through posterior probability

Predictor identification
Decrease model fit Effect size Consistency effect




XAl: Consistency through posterior probability
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XAl: Consistency through posterior probability
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XAl: Consistency through posterior probability
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XAl: Decrease in model likelihood when permuting features

Spl Sp2 Sp3 Spd4 Sp5
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XAl: Decrease in model likelihood when permuting features
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XAl: Decrease in model likelihood when permuting features
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XAl: Decrease in model likelihood when permuting features
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Under-fitting

What about overfitting?

Just right Over-fitting

NSNS

Silvestro & Andermann 2020 arXiv
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Model regularization #2 — Bayesian shrinkage

Species-time-specific
rates

NSNS S
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Time-dependent and trait-dependent BDNN model

Time and trait dependent rates Categorical and continuous trait dependent rates
— State 1 === State 1
{ =— State 2 1 =State 2

Continuous trait

Time and trait dependent rates Time dependent rates
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Continuous trait
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The rise and fall of elephants
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Unsupervised Bayesian neural network model of speciation and extinction
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Marginal per-species speciation and extinction rates
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Average speciation and extinction rates through time
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Unsupervised Bayesian neural network model of speciation and extinction
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Using tools from Explainable Al to determine the drivers of speciation and extinction

1. Permutations (Partial dependence plots)
2. Marginal probabilities

3. SHAP values (mean absolute deviation from the mean rate across all species caused by a predictor)

Ranking the predictors of speciation Ranking the predictors of extinction
Dietary specialization ﬁ ‘f M Human impact
Biogeography Biogeography
Time

Ecomorphological trait

Daniele Silvestro — 2024



1.0
2
= 05
©
3 0.0
g 05
S
< —1.0
©
E 1.5
o
S 2.0
0
-2.5

Speciation rates linked with ecomorphology and biogeography

Time (Ma)

ajel uoleloadg

Islands

Eurasia

Americas -

Africa

0.0 0.5 1.0 1.5 2.0 2.5
Speciation rate

Daniele Silvestro — 2024



Extinction rates linked with overlap with humans and biogeography
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The BDNN model is available
on GitHub (with tutorials)

T Hauffe

github.com/dsilvestro/PyRate
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The BDNN model

The birth-death neural-network model modulates speciation and extinction rates per lineage and through time as a
function of

time
one or multiple categorical and/or continuous traits (e.g. diet, body mass, geographic range)
one or more time-dependent variables (e.g. paleotemperature)

PN~

phylogenetic relatedness (e.g. classification into higher taxa or phylogenetic eigenvectors)

As the function is based on a fully connected feed-forward neural network, it is not based on a priori assumptions
about its shape. For instance, it can account for non-linear and non-monotonic responses of the rates to variation in
the predictors.

It can also account for any interactions among the predictors.

The parameters of the BDNN model are estimated jointly with the origination and extinction times of all taxa and the
preservation rates. The output can be used to estimate rate variation through time, across species, and to identify the
most important predictors of such variation and their individual or combined effects.

Setting up a BDNN dataset

The BDNN model requires occurrence data in the standard PyRate format. It additionally can use species and time
specific data. A table with species-specific trait data can be loaded in the analysis using the -trait_table
command, while a table with time-series predictors can be loaded using the -BDNNtimevar command.

We provide an le daf t based on Hauffe et al 2022 MEE. This includes genus level occurrence data of
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|s the BDNN a solution to all fossil diversification questions?

The BDNN is data-hungry! (Probably not suitable for poorly sampled fossil clades)
The BDNN is CPU intensive

Formal model testing provides a more direct (arguably) more powerful way to test hypotheses
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