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specialization increases extinction risk (Colles et al., 2009; Raia et al.,
2016; Slatyer et al., 2013). Our data point to the latter. Regardless of
which clade they actually belong to, our analysis of the fossil record
indicates that the average extinction rate in sabertooths is 50% higher
than in conical tooths. Since there is no statistically significant differ-
ence in speciation rate between the two ecotypes, diversification rate
should necessarily be depressed by the sabertooth character. This might
help explaining why there never were sabertooths of different clades
living in the same ecogeographical region for long, and why sabertooth
species are rare in the fossil record overall.

A positive relationship between large body size and extinction risk
has been demonstrated to apply in mammals (Cardillo, 2005). Most
sabertooth were in fact large by felid standards, which suggests the
difference in extinction rate between the two felid ecomorphotypes
could be subsidized by body size differences. However, we found no
relationship between size and extinction rate in our data, and the pat-
tern itself seems not to be linear (Ripple et al., 2017), and driven by
ecological role and commonness, rather than body size per se (Safi and
Pettorelli, 2010). Liow (2004, 2007) and Colles et al. (2009) found that
morphologically deviant, ecologically specialized taxa tend to endure
for shorter in the fossil record, an observation that concurs with the
strongly held idea that specialists incur greater extinction risk in living
biota (Cardillo et al., 2005; Colles et al., 2009; Kingsolver and Pfennig,
2004; Raia et al., 2016; Slatyer et al., 2013). Sabertooths perfectly fit
this category. The significant rate shifts applying to either smilodontini
and homoteriini (Figs. 3,4), the development of the peculiar upper
canines, and the profound rearrangement of muscle attachments on the
mandible, are all strongly suggestive of the fact that sabertooths are
‘deviant’ by felid standards. This study suggests that such highly de-
rived morphology, coupled with the ecologically narrow niche was
responsible for the comparatively short duration of sabertooths in the
fossil record.

5. Conclusions

The sabertooth character evolved at least seven times among car-
nivorous mammals and mammal-like reptiles. Sabertooths shows an
exceptionally specialized, highly derived morphology different clades
converged upon. While the iterative evolution of the sabertooth char-
acter in mammals proves it is an evolutionary success, the extreme
craniodental specialization the acquisition of the sabertooth mor-
phology brings about implies increased extinction risk, which probably
helps explaining why sabertooths were never very abundant in terms of
species, and no sabertooth is alive today.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.palaeo.2018.01.034.
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specialization increases extinction risk (Colles et al., 2009; Raia et al.,
2016; Slatyer et al., 2013). Our data point to the latter. Regardless of
which clade they actually belong to, our analysis of the fossil record
indicates that the average extinction rate in sabertooths is 50% higher
than in conical tooths. Since there is no statistically significant differ-
ence in speciation rate between the two ecotypes, diversification rate
should necessarily be depressed by the sabertooth character. This might
help explaining why there never were sabertooths of different clades
living in the same ecogeographical region for long, and why sabertooth
species are rare in the fossil record overall.

A positive relationship between large body size and extinction risk
has been demonstrated to apply in mammals (Cardillo, 2005). Most
sabertooth were in fact large by felid standards, which suggests the
difference in extinction rate between the two felid ecomorphotypes
could be subsidized by body size differences. However, we found no
relationship between size and extinction rate in our data, and the pat-
tern itself seems not to be linear (Ripple et al., 2017), and driven by
ecological role and commonness, rather than body size per se (Safi and
Pettorelli, 2010). Liow (2004, 2007) and Colles et al. (2009) found that
morphologically deviant, ecologically specialized taxa tend to endure
for shorter in the fossil record, an observation that concurs with the
strongly held idea that specialists incur greater extinction risk in living
biota (Cardillo et al., 2005; Colles et al., 2009; Kingsolver and Pfennig,
2004; Raia et al., 2016; Slatyer et al., 2013). Sabertooths perfectly fit
this category. The significant rate shifts applying to either smilodontini
and homoteriini (Figs. 3,4), the development of the peculiar upper
canines, and the profound rearrangement of muscle attachments on the
mandible, are all strongly suggestive of the fact that sabertooths are
‘deviant’ by felid standards. This study suggests that such highly de-
rived morphology, coupled with the ecologically narrow niche was
responsible for the comparatively short duration of sabertooths in the
fossil record.

5. Conclusions

The sabertooth character evolved at least seven times among car-
nivorous mammals and mammal-like reptiles. Sabertooths shows an
exceptionally specialized, highly derived morphology different clades
converged upon. While the iterative evolution of the sabertooth char-
acter in mammals proves it is an evolutionary success, the extreme
craniodental specialization the acquisition of the sabertooth mor-
phology brings about implies increased extinction risk, which probably
helps explaining why sabertooths were never very abundant in terms of
species, and no sabertooth is alive today.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.palaeo.2018.01.034.
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So many flavors of the birth-death model…

Couldn't we have one model that does it all? 🤔

Well, perhaps we can… 🦄 
(but let’s talk about neural nets first)
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Fossil record

Silvestro et al. 2019 Paleobiology

Bayesian (unsupervised) estimation of speciation and extinction rates from fossils
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Time-varying Speciation & extinction 
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Unsupervised Bayesian neural networks and xAI to infer factors governing diversification
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What about overfitting? 🤔 

Under-fitting Over-fittingJust right

Model regularization #1 - priors on NN weights 

Silvestro & Andermann 2020 arXiv
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The rise and fall of elephants 
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Unsupervised Bayesian neural network model of speciation and extinction

Species and 
time specific 

speciation and 
extinction rates
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Marginal per-species speciation and extinction rates
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Average speciation and extinction rates through time
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Unsupervised Bayesian neural network model of speciation and extinction

github.com/dsilvestro/PyRate T Hauffe

eXplainable AI tools to 
infer the predictors of 

rate changes

Species and 
time specific 

speciation and 
extinction rates
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1. Permutations (Partial dependence plots) 

2. Marginal probabilities 

3. SHAP values (mean absolute deviation from the mean rate across all species caused by a predictor)

Using tools from Explainable AI to determine the drivers of speciation and extinction

Ranking the predictors of speciation

Biogeography

Time

Dietary specialization

Ranking the predictors of extinction

Biogeography

Ecomorphological trait

Human impact
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github.com/dsilvestro/PyRate

The BDNN model is available 
on GitHub (with tutorials)

T Hauffe

http://github.com/dsilvestro/PyRate


Daniele Silvestro – 2024 46

Is the BDNN a solution to all fossil diversification questions? 

The BDNN is data-hungry! (Probably not suitable for poorly sampled fossil clades)

Formal model testing provides a more direct (arguably) more powerful way to test hypotheses

The BDNN is CPU intensive


