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A substitution model is a mathematical description of how 
characters change over evolutionary time:
 - DNA
 - RNA,
 - Amino acids, 
 - Morphology

Mutation = when one state changes to another (e.g., A → G).

Substitution = when that mutation sticks in a population and 
becomes the new normal.
Substitution models describe the probability of these changes 
happening along the branches of a phylogenetic tree.

Substitution models

0

1



Every substitution model is defined by a rate matrix (Q), which tells us 
how fast different changes happen

For DNA: 4 possible states (A, C, G, T).

For proteins: 20 states (amino acids).

For morphology: as many states as you code for a character.

Different substitution models are defined using the Q matrix

Rate Matrix



Rate Matrix

0

1

Q = (   )-μ0  μ01
 μ10  -μ1

Any assumptions about your data 
can be incorporated through the 
mathematical expression

Must sum to zero



Rate Matrix

Q = (   )-μ0  μ01
 μ10  -μ1

P(t) = eQt

Matrix 
exponentiation

This tell us the rate, how can we use 
this in an inference?

t
This allows us to 
calculate the 
probability of a 
switch along a 
branch
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Bayes Theorem
The rate matrix (Q) is what gives us the likelihood term.
 The data at the tips (DNA bases, amino acids, or 
morphology) have to be explained by the tree.

how probable it is to see your fossil and/or 
molecular data given a tree.



Substitution models in molecular data

All changes equal
Equal base frequences

Transitions ≠ Transversions 
 Unequal base frequencies

Every substitution type has its own rate
Unequal base frequencies
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Morphological data was the 
original type of information used in 
phylogenetic analysis

Fossils can be used to provide 
time calibrations, helps extant 
phylogeny, allows us to understand 
evolution through time

Monnet et al 2011 BMC Ecology and Evolution

Morphological data

https://bmcecolevol.biomedcentral.com/articles/10.1186/1471-2148-11-115


Discrete Characters: Morphological data 
often consist of discrete characters, such as 
the presence or absence of certain traits, or 
more complex multistate traits (e.g., 
number of limbs, type of leaf, presence of 
a particular bone structure)

Continuous Characters: Some 
morphological data can be continuous, 
such as measurements of body size, length 
of bones, or other quantitative traits

Image source

Types of morphological data

https://www.zoologytalks.com/
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Types of morphological data
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Cambrian stalked echinoderms show 
unexpected plasticity of arm construction

Zamora & Smith. 2012 Proc B

Taxa 1

Trait 1

Taxa 14 

Trait 28
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Presence/ 
absence

No consistent 
biological 
meaning

High proportion 
of missing data

Non-applicable 
characters

Multistate 
characters

Making 
assumptions 
about 
evolution 
from this 
data is 
extremely 
difficult

Often small



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



Binary traits 0 1 Often describes the presence/absence of a trait

Multistate traits 0 1 2 3 4 ….. Used to describe more complex traits and can 
capture greater variation between taxa 

Missing characters ? Used when the specimen is either too decayed to 
determine whether it has a certain character trait 
or not, or we are missing the relevant part of the 
body

Non-applicable - Used when the trait is not associated with a taxon. 
They represent a type of nested coding where the 
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within 
species

Uncertain 0/1/2 Used when it is not clear which character trait is 
present in the taxon

Discrete character data



How do we model 
morphological 
evolution?



0 1

Assumes equal 
transition probabilities 
between states Q = (   )-μ0  μ01

 μ10  -μ1

Mk model



0

1

2

3

K can be any number of 
states

*4 state here as an 
example, can be 
any number from 
2!

Mk model
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What is one 
characteristic of 
morphological data 
that is extremely 
different to molecular 

MkV model
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What is one 
characteristic of 
morphological data 
that is extremely 
different to molecular 

All varying characters

MkV model



Corrects for ascertainment bias

Failing to account for this can lead to overestimations in 
branch lengths and which can further lead to errors in 
topology!

Pr (D | V ) = Pr ( D,V )

Pr ( V )

Condition the likelihood 
on there only being 
varying site

MkV model



True Branch Length Mk Mkv
Percent 
correct

- 74.0 99.8

Branch A 0.2 241,750 
(±349,100)

0.206 (±0.060)

Branch B 0.05 0.43210 
(±0.13756)

0.050 (± 0.018)

Branch X 0.05 54.646 
(±1,725.3)

0.052 (± 0.023)

Branch C 0.2 143,950 
(±228,910)

0.206 (± 0.059)

Branch D 0.05 0.022 (± 0.054) 0.051 (±0.019)

MkV model



Image source

Among character rate variation

https://www.britannica.com/animal/turtle-reptile/Origin-and-evolution


T1 T2

Taxa A 0 0

Taxa B 0 1

Taxa C 1 2

Slow rate of evolution
Fast rate of evolution

Relative to each other!

The transition rate 
will impact branch 
lengths

Among character rate variation



T1 T2

Taxa A 0 0

Taxa B 0 1

Taxa C 1 2

What do we do?

Allow these traits to evolve at different rates:
- Specify which traits evolve fast
- Use a gamma model to account for rate heterogeneity

Among character rate variation



T1 T2

Taxa A 0 0

Taxa B 0 1

Taxa C 1 2

What do we do?

Allow these traits to evolve at different rates:
- Specify which traits evolve fast
- Use a gamma model to account for rate 

heterogeneity

Among character rate variation



Adapted from Paul 
Lewis PhyloSeminar

Among character rate variation



Adapted from Paul 
Lewis PhyloSeminar

Among character rate variation



Boundaries (dotted lines) are placed so that
each category represents 1/4 of the distribution
(i.e. 1/4 of the area under the curve)

Representative rates (r1, r2, r3, r4) are
the means of each category

Adapted from Paul 
Lewis PhyloSeminar

Among character rate variation



T1 T2

Taxa A 0 0

Taxa B 0 1

Taxa C 1 2

What do we do?

Allow each trait to evolve according to the rates drawn 
from the gamma distribution
One rate will fit the best and be the most influential for 
the likelihood calculation

Faster R  (R4)

Slower R  (R1,2)

Among character rate variation



Larger shape means less 
heterogeneity

Adapted from Paul 
Lewis PhyloSeminar

Among character rate variation



For each category:
Q1 =  r1 ⋅ Q,
Q2 =  r2 ⋅ Q,
Q3 =  r3 ⋅ Q,
Q4 =  r4 . Q

* r

Compute the likelihood for 
each site
L1 = P(site | Q1)
L2 = P(site | Q2)
L3 = P(site | Q3)
L4 = P(site | Q4)

Average over categories

Lsite =1/4 (L1 + L2 + L3 + L4)
This gives the final likelihood for that site, accounting 
for among-site rate variation.

Incorporating ACRV into the matrix



Grouping together parts of 
the alignment that have 
similar characteristics and or 
may have evolved together 
due to evolutionary 
pressures  

The defaults in many 
phylogenetic software is to 
group by maximum 
observed state size

Q = (   )-μ0  μ01
 μ10  -μ1

Partitioning data



When should we partition our data?

Partitioning data



When should we partition our data?

If we have presence (1) absence (0) traits partitioning will 
always be a logical approach: what would transitioning 
to state 2 in this scenario even mean?

Partitioning data



When should we partition our data?

If we have presence (1) absence (0) traits partitioning will 
always be a logical approach: what would transitioning 
to state 2 in this scenario even mean?

We should be cautious for traits describing a trait – just 
because we do not observe a state 2 can we be 
absolutely certain there never was one?

Justifying partitioning schemes is very important as 
they have a major impact on inference results

Partitioning data



Other morphological 
models



Ordered characters can be placed in an order so that
transitions only occur between adjacent states. 

For example, “intermediate” species that are somewhere in between 
limbed and limbless – for example, the “mermaid skinks” (Sirenoscincus) 
from Madagascar, so called because they lack hind limbs. An ordered 
model might only allow transitions between limbless and intermediate, 
and intermediate and limbed; it would be impossible under such a model 
to go directly from limbed to limbless without first becoming 
intermediate. 

For unordered characters, any state can change into any other state.

Phylogenetic Comparative Methods Harmon 2019

Ordered characters

https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf


0 1

2

3

0 1 2 3

All characters ordered:

Specific characters 
ordered:

Phylogenetic Comparative Methods Harmon 2019

Ordered characters

https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf


Tarasov 2023 Systematic Biology

Markov models for 
phylogenetic inference 
with anatomically 
dependent (inapplicable) 
morphological characters

Non-applicable characters 
only considered when 
they are present (1) 

Embedded dependency model

https://academic.oup.com/sysbio/article/72/3/681/7036827


Casali et al 2022 Zoological Journal of the Linnean Society

Characters can be groups based 
on anatomical region

Other criteria such as the degree 
of homoplasy present in a 
character was explored in this 
study – and found to be a better fit 
using Bayes factors 

Reassessing the phylogeny and divergence 
times of sloths (Mammalia: Pilosa: Folivora)

Alternative partitioning schemes

https://academic.oup.com/zoolinnean/article/196/4/1505/6617197


Casali et al 2022 
Zoological Journal of 
the Linnean Society

Alternative partitioning schemes

https://academic.oup.com/zoolinnean/article/196/4/1505/6617197


Generalising assumptions across different traits is often not possible
Modelling special characters in matrices 

Character correlation occurs when two or more characters are not 
independent. Functional/developmental linkage: Traits are biologically 
linked. Example: The length of finger bones may be correlated with the 
length of the hand.
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Challenges with morphological data



Morphological matrices are often quite small:
- Collection is very time consuming
- Number of characters available can be very small 
depending on the group

Image source

Challenges with morphological data

https://russellgarwood.co.uk/teaching/EART27201/brachiopods.html


Example of 114 empirical tetrapod matrices

Looked at the impact on:
- branch lengths (evolutionary distances)
- Tree topology (species relationships) 

Impact of model on key parameter estimates



Percentage difference in 
tree length relative to Mk 
model

Tree length of 
two different 
data sets

Rf 
distances 
of two 
data sets



Percentage difference in 
tree length relative to Mk 
model

Tree length of 
two different 
data sets

Rf 
distances 
of two 
data sets



How do we choose a 
model?



Bayes factors are commonly used to determine the relative fit 
between model.

It relies on comparing the marginal likelihoods approximated from 
different models.  

The ML measures the average fit of a model to our data.

We use MCMC to avoid calculating this number as it is 
computationally expensive and often not directly possible.

Model selection



P ( model | data ) = 

P ( data | model ) P ( model ) 

P ( data | model )

Posterior

Marginal 
likelihood

Likelihood

Priors

Model selection



Marginal probability of the data (denominator in 
Bayes' rule) is the expected value of the likelihood 
with respect to the prior distribution. 

If likelihood measures model fit, then the marginal 
likelihood measures the average fit of the model 
to the data over all parameter values.

What is the expected value?

Marginal likelihood



P ( data | model )

The marginal 
likelihood is used to 
evaluate the overall fit 
of the model to the 
data, integrating over 
all parameter values.

P(D) =  ∫P(D|θ)P(θ) d(θ)

Adapted from Paul 
Lewis PhyloSeminar

Marginal likelihood



P ( data | model )

Very small, single 
number between the 
posterior distribution 
and the prior

Adapted from Paul 
Lewis PhyloSeminar

Marginal likelihood



There are two common algorithms to do this: 
- Stepping stone 
- Path sampling

Both of these approaches are computationally expensive

Stepping-stone algorithms are like a series of MCMC 
simulations that iteratively sample from a specified 
number of distributions that are discrete steps between 
the posterior and the prior probability distributions.  

Approximating the marginal likelihood



B01 =  
P ( D | M0 )

P ( D | M1 )
=

Marginal likelihood for model M0

Marginal likelihood for model M1

Bayes factors



B01 =  
P ( D | M0 )

P ( D | M1 )
=

Marginal likelihood for model M0

Marginal likelihood for model M1

Marginal likelihoods are often on the log scale so the Bayes 
factor can be calculated as:

logB01 = logP( D | M0 ) - logP( D |M1 ) 

Bayes factors



Table source

Bayes factors

https://revbayes.github.io/tutorials/model_selection_bayes_factors/bf_intro.html


The way we partition data for 
morphological data is different to 
molecular

010023
201102
112131

Unpartitioned everything 
in Q-matrix of size 4

Partitioning the data puts 
characters into correctly 
sizes Q-matrix

Issues with Bayes factors for morphological data



The way we partition data for 
morphological data is different to 
molecular
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Unpartitioned everything in 
Q-matrix of size 4

Partitioning the data puts 
characters into correctly 
sizes Q-matrix



1 2 3 4 5

−3
40

−3
00

−2
60

Number of partitions

M
ar

gi
na

l L
ike

lih
oo

d

Data set with 6 states

As the number of 
partitions increases, so 
does the likelihood

Issues with Bayes factors for morphological data



Assess whether a model is capturing the 
evolutionary dynamics that generated the data

Gives the absolute fit 

One approach is Posterior Predictive 
Simulations

Model adequacy



Compare the simulated trees 
and data to the empirical using 

test statistics

Posterior Predictive Simulations



Compare the simulated trees 
and data to the empirical using 

test statistics

Posterior Predictive Simulations



A test statistic is a numerical summary of data.
A value that captures the characteristic of you data.
 

For PPS we have 3 categories:
Data-based, inference-based, mixed

Test statistics



Calculate one value for the empirical 
data set

Calculate a range (500) values using 
all simulated data sets

MCC summary tree

Calculating consistency index

Test statistics: CI

consistency index: measure of homoplasy 
(convergent evolution)
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We can use this to 
calculate effect 
sizes
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Replicates 

0

Closer to zero 
the better the 
model

Effect sizes



Simulated under 
the MkV+G 
model: These test 

statistics are 
informative 
about the 
correct model

We do see the 
correct model 
consistently closest 
to zero

Closer to zero 
the better the 
model

Simulated under the 
MkVP+G model: 

Test statistics: CI



Consistency Index Retention Index

Found 3 
models that 
are 
adequate

Empirical data sets



Consistency Index Retention Index

No models 
are 
adequate

Empirical data sets



Model adequacy exercise

https://revbayes.github.io/tutorials/pps_morpho/

