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Substitution models

A substitution model is a mathematical description of how

characters change over evolutionary time:
- DNA

- RNA,
- Amino acids,
- Morphology

Mutation = when one state changes to another (e.g., A — Q).

Substitution = when that mutation sticks in a population and
becomes the new normal.

Substitution models describe the probability of these changes
happening along the branches of a phylogenetic tree.



Rate Matrix

Every substitution model is defined by a rate matrix (Q), which tells us
how fast different changes happen

For DNA: 4 possible states (A, C, G, T).
For proteins: 20 states (amino acids).
For morphology: as many states as you code for a character.

Different substitution models are defined using the Q matrix



Rate Matrix

-Ho Mo
Q = M1o —M

Must sum to zero

Any assumptions about your data
can be incorporated through the
mathematical expression



Rate Matrix

) =

-Ho Moy
M10 —M1

This tell us the rate, how can we use
this in an inference?

Matrix This allows us to
exponentiation calculate the
probability of a
P(t) — th switch along a

branch



Bayes Iheorem
The rate matrix (Q) is what gives us the likelihood term.

The data at the tips (DNA bases, amino acids, or
morphology) have to be explained by the tree.

P(s |G %) P(E @®)

0100...
O101...
1101...

0100..

how probable it is to see your fossil and/or
molecular data given a tree.



Substitution models in molecular dats
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Morphological data

evolutionary pathway

Morphological data was the
original type of information used in
phylogenetic analysis

Fossils can be used to provide
time calibrations, helps extant
phylogeny, allows us to understand
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Monnet et al 2011 BMC Ecology and Evolution


https://bmcecolevol.biomedcentral.com/articles/10.1186/1471-2148-11-115

Types of morphological data

Discrete Characters: Morphological data
often consist of discrete characters, such as
the presence or absence of certain traits, or
more complex multistate traits (e.g.,
number of limbs, type of leaf, presence of
a particular bone structure)

Continuous Characters: Some
morphological data can be continuous,
such as measurements of body size, length
of bones, or other quantitative traits

Elephas

(Asian elephant Py )

Mammuthus
(mammoth)

@
d'
f\\

[

N\

N

\

./ff Nl N
akinh
7

TR
)\% ~
3

Primelephas

Gomphomeriu’%;l@/\/
2 i

"=\ " Loxodonta
I | (African elephant)

&
'}

Mammut
(mastodon)

Stegodon

@F Palaeomastodon

Image source



https://www.zoologytalks.com/

Types of morphological data
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Trait 1 Trait 28
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Discrete character dats

Binary traits

01

Often describes the presence/absence of a trait




Discrete character dats

Binary traits

01

Often describes the presence/absence of a trait

Multistate traits

01234....

Used to describe more complex traits and can
capture greater variation between taxa




Discrete character dats

Binary traits 01 Often describes the presence/absence of a trait
Multistate traits 01234..... | Used to describe more complex traits and can
capture greater variation between taxa
?

Missing characters

Used when the specimen is either too decayed to
determine whether it has a certain character trait
or not, or we are missing the relevant part of the

body
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Discrete character dats
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Discrete character dats

Binary traits 01 Often describes the presence/absence of a trait

Multistate traits 01234..... | Used to describe more complex traits and can
capture greater variation between taxa

Missing characters ? Used when the specimen is either too decayed to
determine whether it has a certain character trait
or not, or we are missing the relevant part of the
body

Non-applicable - Used when the trait is not associated with a taxon.
They represent a type of nested coding where the
presence of the trait is defined in a different trait

Polymorphisms 0/1/2 Used when there are variations in a traits within
species

Uncertain 0/1/2 Used when it is not clear which character trait is

present in the taxon
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Mk model

Assumes equal
transition probabilities -Ug Mo
between states Q = Uqg -M1



Mk model

K can be any number of

states
—Ho
Q= H10
H20
H30

Ho2
Hi12
—L
M32

Ho3
Hi13
M23
—H3

*4 state here as an
example, can be

any number from
2!



MKV model

What is one
characteristic of

morphological data
that is extremely
different to molecular
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MKV model

What is one
characteristic of

morphological data
that is extremely
different to molecular
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MKV model

Corrects for ascertainment bias

Failing to account for this can lead to overestimations in
branch lengths and which can further lead to errors in

topology!

Condition the likelihood

on there only being
varying site

PriDIV)=Pr(D\V)

Pr(V)



MKV model

True Branch Length Mk Mkv

Percent - 74.0 99.8

correct

Branch A 0.2 241,750 0.206 (+0.060)
(£349,100)

Branch B 0.05 0.43210 0.050 (= 0.018)
(+0.13756)

Branch X 0.05 54.646 0.052 (+ 0.023)
(x1,725.3)

Branch C 0.2 143,950 0.206 (= 0.059)
(£228,910)

Branch D 0.05 0.022 (+0.054) 0.051 (+0.019)




Among character rate variation

Turtle shell evolution

Eunotosaurus Pappochelys Odontochelys Proganochelys
~220 mya ~210 mya

~260 mya
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Image source


https://www.britannica.com/animal/turtle-reptile/Origin-and-evolution

Among character rate variation

T1 T2
Taxa A 0 0
Taxa B 0 1
Taxa C 1 2

Slow rate of evolution

The transition rate

will impact branch
lengths

Fast rate of evolution

Relative to each other!



Among character rate variation

What do we do?

T1 T2
Taxa A 0 0
Taxa B 0 1
Taxa C 1 2

Allow these traits to evolve at different rates:
- Specify which traits evolve fast

- Use a gamma model to account for rate heterogeneity



Among character rate variation

What do we do?

T1 T2
Taxa A 0 0
Taxa B 0 1
Taxa C 1 2

Allow these traits to evolve at different rates:
- Specify which traits evolve fast

- Use a gamma model to account for rate
heterogeneity



Among character rate variation
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Among character rate variation
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Among character rate variation
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Among character rate variation

What do we do?

T1 T2
Taxa A 0 0
Taxa B 0 1
Taxa C 1 2 Faster R (R4)
Slower R (R1,2)

Allow each trait to evolve according to the rates drawn
from the gamma distribution

One rate will fit the best and be the most influential for
the likelihood calculation



Among character rate variation
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Incorporating ACRV into the matrix

—Ho  Mor Moz  MHo3 Compute the likelihood for
_ N each site
Q=| Mo ~H H2 By L, = P(site | Q)
2o M1 —H2  H23 L, = P(site | Q,)
Mo M1  M32 —M3 L; = P(site | Q)
L, = P(site | Qg)
For each category:
Q= r-Q Average over categories
Q= r,-Q,
Q;=r3-Q, Lo =1/4 (Ly + L, + L3+ Ly)
Qu=1r,.Q This gives the final likelihood for that site, accounting

for among-site rate variation.



Partitioning data

Grouping together parts of
the alignment that have
similar characteristics and or
may have evolved together
due to evolutionary
pressures

The defaults in many
phylogenetic software is to
group by maximum
observed state size

—Ho  Hoi
Q= Hio —Hu
H20 M21
H30 M31

-Ho Mo
M1o ~M1

Ho2
Hi12
—H2
M32

Mo3
k13
M23
—ls



Partitioning data

When should we partition our data?



Partitioning data

When should we partition our data?

If we have presence (1) absence (0) traits partitioning will
always be a logical approach: what would transitioning
to state 2 in this scenario even mean?



Partitioning data

When should we partition our data?

If we have presence (1) absence (0) traits partitioning will
always be a logical approach: what would transitioning
to state 2 in this scenario even mean?

We should be cautious for traits describing a trait — just
because we do not observe a state 2 can we be
absolutely certain there never was one?

Justifying partitioning schemes is very important as
they have a major impact on inference results



Other morpnological
moaels



Ordered characters

Ordered characters can be placed in an order so that
transitions only occur between adjacent states.

For example, “intermediate” species that are somewhere in between
limbed and limbless — for example, the “mermaid skinks” (Sirenoscincus)
from Madagascar, so called because they lack hind limbs. An ordered
model might only allow transitions between limbless and intermediate,
and intermediate and limbed; it would be impossible under such a model
to go directly from limbed to limbless without first becoming
intermediate.

For unordered characters, any state can change into any other state.

Phylogenetic Comparative Methods Harmon 2019


https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf

Ordered characters

All characters ordered:

() C———lp | — ) — 3

Specific characters () €—

ordered: \

2

Phylogenetic Comparative Methods Harmon 2019


https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf

Embedded dependency mode]
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{ J% _______________
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Markov models for
phylogenetic inference
with anatomically

. . tail, no armor
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Tarasov 2023 Systematic Biology


https://academic.oup.com/sysbio/article/72/3/681/7036827

Alternative partitioning schemes

Reassessing the phylogeny and divergence
times of sloths (Mammalia: Pilosa: Folivora)

Characters can be groups based
on anatomical region

UN A1 A2 A3 A4 A5 A6 A7
Teeth

Mandible

Other criteria such as the degree
of homoplasy presentin a
character was explored in this
study — and found to be a better fit
using Bayes factors

Hyoid apparatus

Cranium

Ear region

Axial skeleton (plus osteoderms)
Appendicular skeleton, anterior

Appendicular skeleton, posterior

Casali et al 2022 Zoological Journal of the Linnean Society


https://academic.oup.com/zoolinnean/article/196/4/1505/6617197

Alternative partitioning schemes
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https://academic.oup.com/zoolinnean/article/196/4/1505/6617197

Challenges with morphological data

Generalising assumptions across different traits is often not possible
Modelling special characters in matrices

Character correlation occurs when two or more characters are not
independent. Functional/developmental linkage: Traits are biologically
linked. Example: The length of finger bones may be correlated with the

length of the hand.
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00050001072200100--0010010000
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00?2570010722001007-0722010110
0015000101201000430100011111



Challenges with morphological data

Morphological matrices are often quite small:

- Collection is very time consuming

- Number of characters available can be very small
depending on the group

SKELETON OF A FISH

ray of the ray of the
Teeth anterior radial posterior
opercular dorsal fin cartilage dorsal fin

Cardinal process

skull

Socket
orbit
Adductor
G '

------ < ¢===== Hinge axis
N

Adjustor

muscle scar :
neural spine
muscle scars \
Adductor upper jaw e st p vertebra
muscle scar S50 |\ i
ok n J | =— hypural
3 BraChldlum |owerjaw _.) 2 = R / 73
Diductor 2 ~_ = caudal
muscle scar clavicle \ = finray
Ventral valve Dorsal valve u pgl;:;c _
girdie pectoral pelvic rib radial anal fin hemal
. fin ray fin ray cartilage ray spine

Image source


https://russellgarwood.co.uk/teaching/EART27201/brachiopods.html

Impact of model on key parameter estimates

Example of 114 empirical tetrapod matrices

Looked at the impact on:
- branch lengths (evolutionary distances)

- Tree topology (species relationships)
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How do we choose &
model”?



Model selection

Bayes factors are commonly used to determine the relative fit
between model.

It relies on comparing the marginal likelihoods approximated from
different models.

The ML measures the average fit of a model to our data.

We use MCMC to avoid calculating this number as it is
computationally expensive and often not directly possible.



Model selection

P ( | data ) = Likelihood
/ l / Priors
Posterior P ( data | ) P ( )

P ( data | model)

/

Marginal
likelihood



Marginal likelihood

Marginal probability of the data (denominator in
Bayes' rule) is the expected value of the likelihood

with respect to the prior distribution.

It likelihood measures model fit, then the marginal
ikelihood measures the average fit of the model

to the data over all parameter values.

What is the expected value?



Marginal likelihood

P ( data | model)

The marginal
likelihood is used to
evaluate the overall fit
of the model to the
data, integrating over
all parameter values.

Adapted from Paul
Lewis PhyloSeminar



Marginal likelihood

P ( data | model )

Very small, single
number between the

posterior distribution
and the prior

Adapted from Paul
Lewis PhyloSeminar



Approximating the marginal likelinood

There are two common algorithms to do this:
- Stepping stone
- Path sampling

Both of these approaches are computationally expensive

Stepping-stone algorithms are like a series of MCMC
simulations that iteratively sample from a specitied
number of distributions that are discrete steps between
the posterior and the prior probability distributions.



Bayes factors

. P(DIMy)  Marginal likelihood for model Mg
o P(DIM,) Marginal likelihood for model M;




Bayes factors

. P(DIMy)  Marginal likelihood for model Mg
o P(DIM,) Marginal likelihood for model M;

Marginal likelihoods are often on the log scale so the Bayes
factor can be calculated as:

logBy; = logP(D | My) - logP( D IMy)



Bayes factors

Strength of evidence BF(MO,M1) log(BF(MO,M1))
Negative (supports M;) <1 <0

Barely worth mentioning 1to3.2 Oto1.16
Substantial 3.2t0 10 1.16 to 2.3
Strong 10 to 100 2.3t04.6
Decisive >100 >4.6

Table source


https://revbayes.github.io/tutorials/model_selection_bayes_factors/bf_intro.html

lssues with Bayes factors for morphological data

The way we partition data for
morphological data is different to

molecular

010023 Unpartitioned everything
201102 in Q-matrix of size 4
112131 Partitioning the data puts

characters into correctly
sizes Q-matrix



The way we partition data for
morphological data is different to

molecular
010023 Unpartitioned everything in
201102 Q-matrix of size 4
112131
Partitioning the data puts
10 00 23 characters into correctly
01 21 02 sizes Q-matrix

11 12 3



lssues with Bayes factors for morphological data

Marginal Likelihood
-300 -260
I

-340
I I

Number of partitions As the number of

. partitions increases, so
Data set with 6 states does the likelihood



Model adequacy

Assess whether a model is capturing the
evolutionary dynamics that generated the data

Gives the absolute fit

One approach is Posterior Predictive
Simulations



Posterior Predictive Simulations

Empirical Data

taxa 1
taxa 2
taxa 3
taxa 4

010121
121010
001001
110101

Compare the simulated trees

and data to the empirical using
test statistics

Simulated Data 1

taxa 1
taxa 2
taxa 3
taxa 4

100121
121020
010111
100101

Simulated Data 2

taxal 110121
taxa2 111010
taxa 3 011101
taxa4 120101

Simulated Data n
taxal 110121
taxa2 111010
taxa 3 011101
taxa4 120101



Posterior Predictive Simulations

Empirical Data

taxa 1
taxa 2
taxa 3
taxa 4

010121
121010
001001
110101

Compare the simulated trees

and data to the empirical using
test statistics

Simulated Data 1

taxa 1
taxa 2
taxa 3
taxa 4

100121
121020
010111
100101

Simulated Data 2

taxal 110121
taxa2 111010
taxa 3 011101
taxa4 120101

Simulated Data n
taxal 110121
taxa2 111010
taxa 3 011101
taxa4 120101



lest statistics

A test statistic is a numerical summary of data.
A value that captures the characteristic of you data.

For PPS we have 3 categories:
Data-based, inference-based, mixed



Test statistics: C|

Calculating consistency index

Empirical Data MCC summary tree

taxal 010121
taxa 2 121010
taxa 3 001001
taxa4 110101

Calculate one value for the empirical
data set

consistency index: measure of homoplasy
(convergent evolution)

Simulated Data 1

taxa 1
taxa 2
taxa 3
taxa 4

100121
121020
010111
100101

Simulated Data 2

taxal 110121
taxa2 111010
taxa 3 011101
taxa4 120101

Simulated Data n

taxal 110121
taxa 2 111010
taxa 3 011101
taxa4 120101

Calculate a range (500) values using
all simulated data sets



Test statistics: C|
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Test statistics: C|

Frequency

Frequency

100 200 300

0

150 250

0 50

Emp

Histograms
showing the
range of Cl
values for all the
simulated data

| We can use this to
1 calculate effect
sizes
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Test statistics: C|

Simulated under

the MkV+G ?

model: o

Simulated under the
MkVP+G model: 8

We do see the
correct model

consistently closest
to zero

) LI S
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Empirical data sets
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Empirical data sets
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Model adeguacy exercise


https://revbayes.github.io/tutorials/pps_morpho/

