

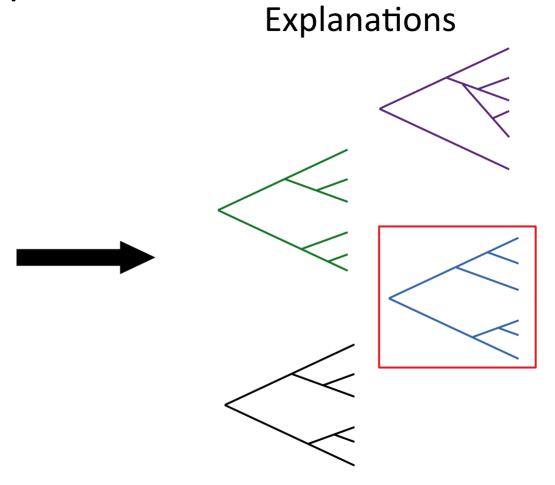
Introduction to Bayesian phylogenetic inference

Joëlle Barido-Sottani

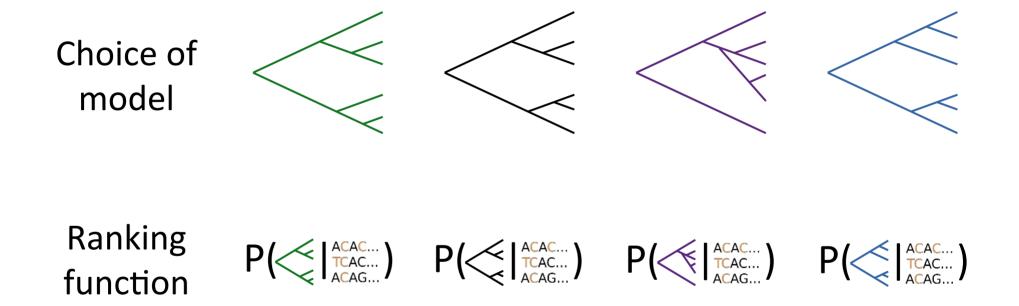
What is inference?

ACAGACTTTCAGACTTTCAGACCC
ACACACCTACAGACTTTCAGACCC
TCAGACTTTCACACCTTCAGACCT
TCACACCTACACACCCCACAGACTT
TCACACCTACACACCCCACAGACTT
TCAGACTTTCACACCCTTCAGACCT

Observations



Requirements for inference



Inference = optimizing **parameters** within a **model** to fit **observations**

What is probability?

Frequentist approach

- Based on repeated experiments
- N = 1000 dice rolls, n = 210 rolls with value 5
 P(dice = 5) = n/N = 0.21

Issues

- Assumes that experiments can be repeated
- Assumes that the underlying system is random

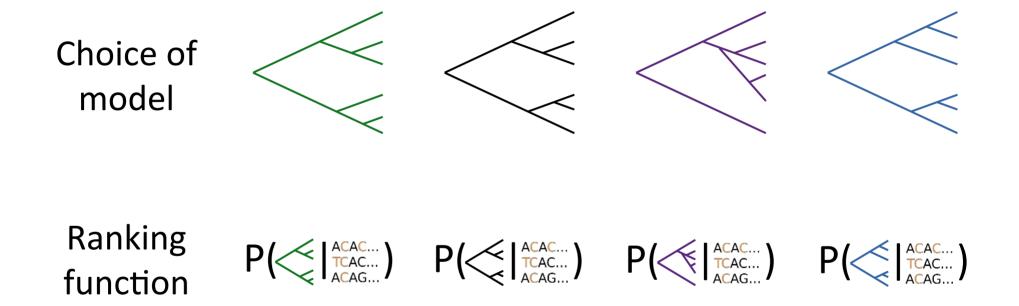
What is probability?

Bayesian approach

- Probability measures how plausible an outcome is based on available information
- P(dice = 5 | no information) = 1/6
 P(dice = 5 | dice is unfair) = 0.01
 P(dice = 5 | perfect information) = 1

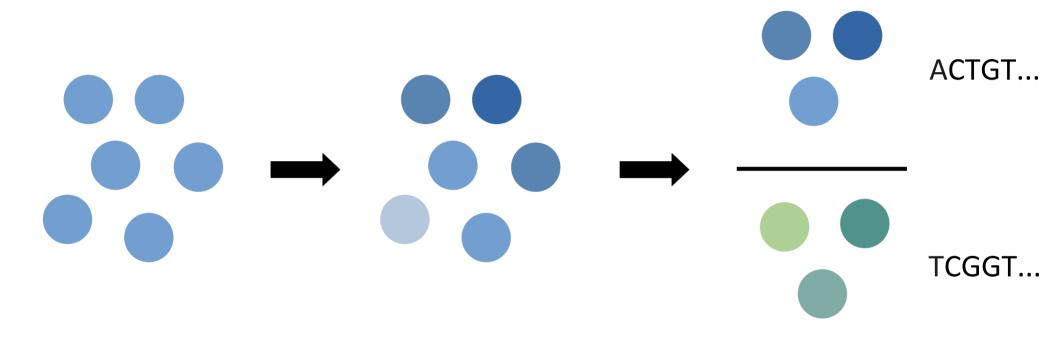
=> Probability expresses the level of certainty

Requirements for inference



Inference = optimizing **parameters** within a **model** to fit **observations**

Generative models of evolution

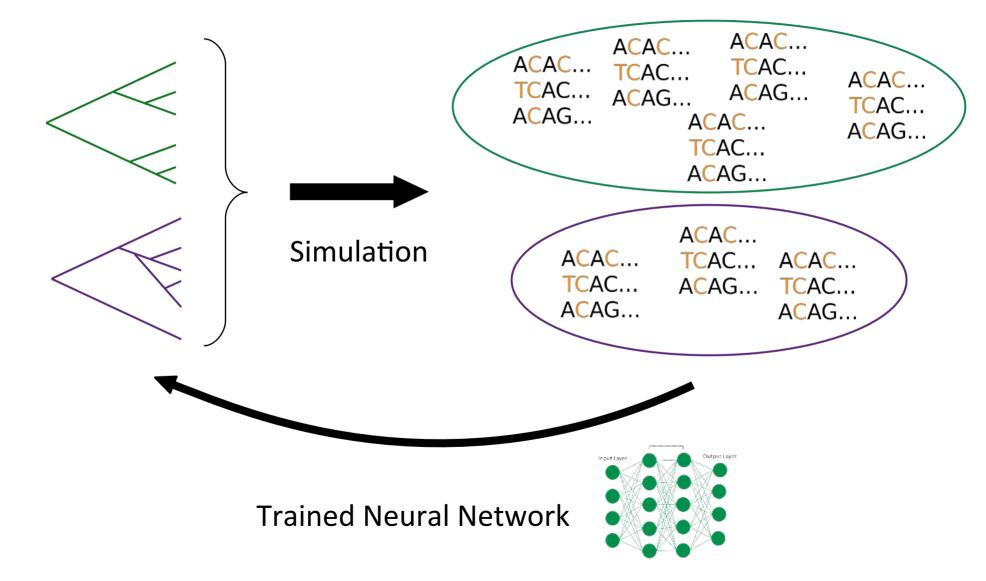


The data is the outcome of the model => we can calculate P(data|parameters)

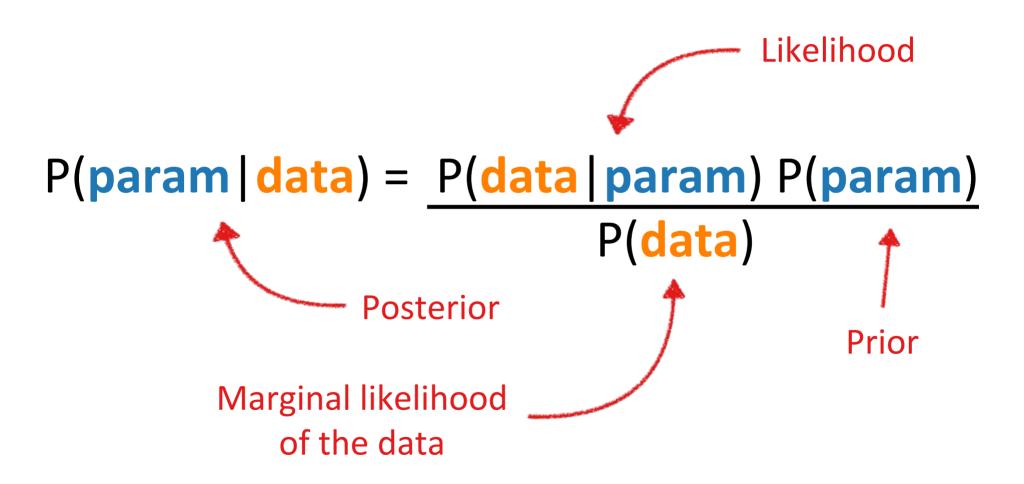
Inference based on generative models

- · What we want: P(parameters | data) probability of model parameters given our observed data
- What we have: P(data|parameters) likelihood i.e. probability of generating the data given the model parameters
- Maximum likelihood approach
 => Use the likelihood P(data|parameters) as ranking function

Deep learning approach



Bayes' theorem for inference



Bayes' theorem for inference

The data and model parameters are described by probabilities

- Prior: P(param) => the range of plausible parameter values
 NB: All model parameters have priors
- Likelihood: P(data | param) => the likelihood is proportional to the probability of observing the data given a hypothesis
- Posterior: P(param | data) => combines information from the data (likelihood) and previous knowledge (prior)
- Marginal likelihood : P(data) => probability of the data given the chosen model(s) over all possible parameter values

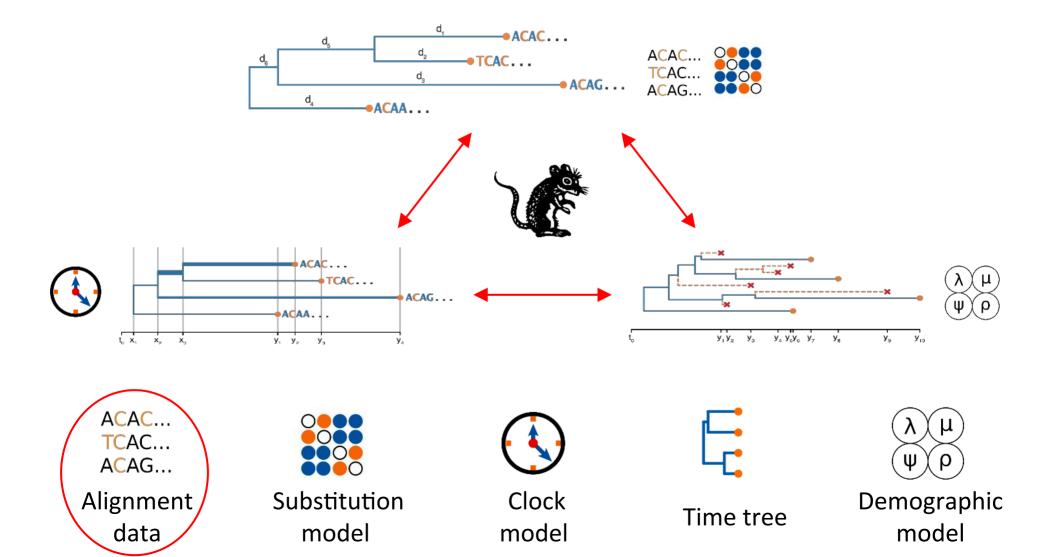
A note on priors

- Priors should be distinct from the data
 - Previous literature (on a different dataset)
 - Knowledge of biological processes
- · Estimates are influenced by both priors and data
- Are other types of analyses free of priors?
 - ML inference: all values are equally likely implicit uniform prior
 - DL inference: priors given by the training dataset
 - More generally: post-processing choices are priors
 e.g. investigating further a value which seems absurd

Bayesian phylogenetic and phylodynamic tools

- · BEAST & BEAST2
- MrBayes & RevBayes
- PhyloBayes (focus on protein alignments)
- Bali-Phy (estimating the alignment)
- SCAR (focus on recombination)
- · Many more.....

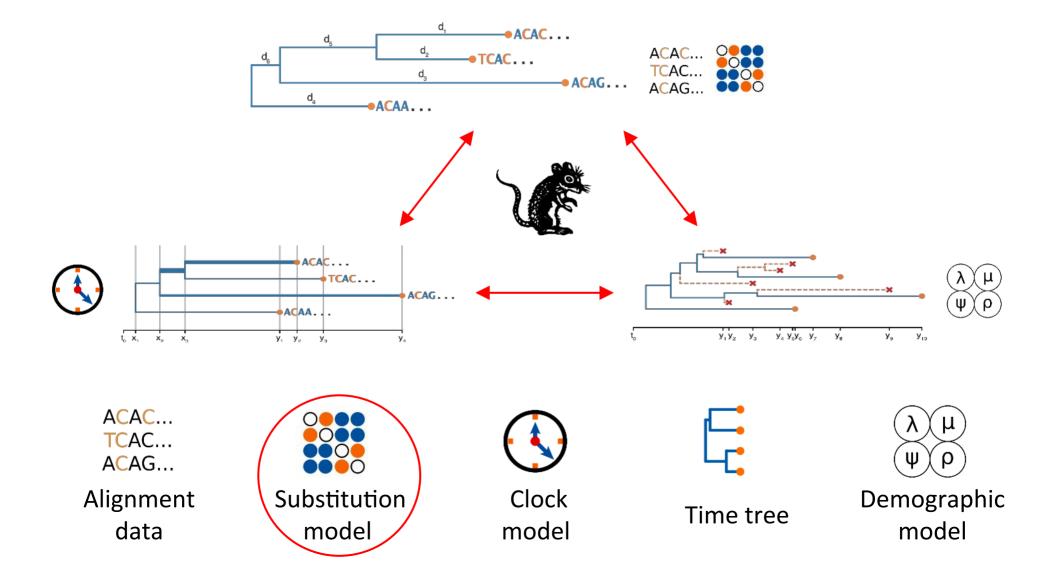
What goes into a **BEAST2** model?



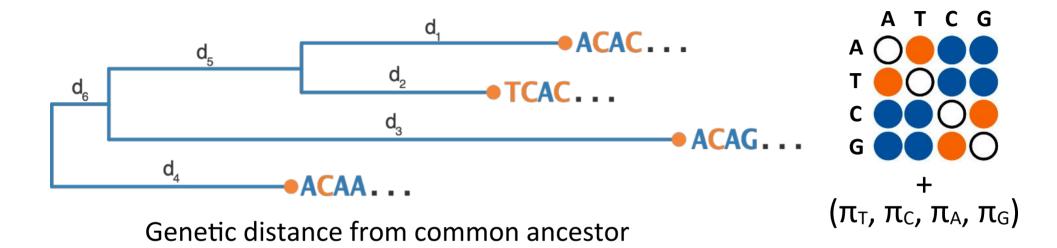
The alignment data

- Typically an alignment of DNA or RNA sequences
- · Can also be amino acids or codons
- · Sampled at one point in time or several
- · Is often split into multiple partitions
 - Multiple genes
 - 1st, 2nd and 3rd codon positions

What goes into a **BEAST2** model?

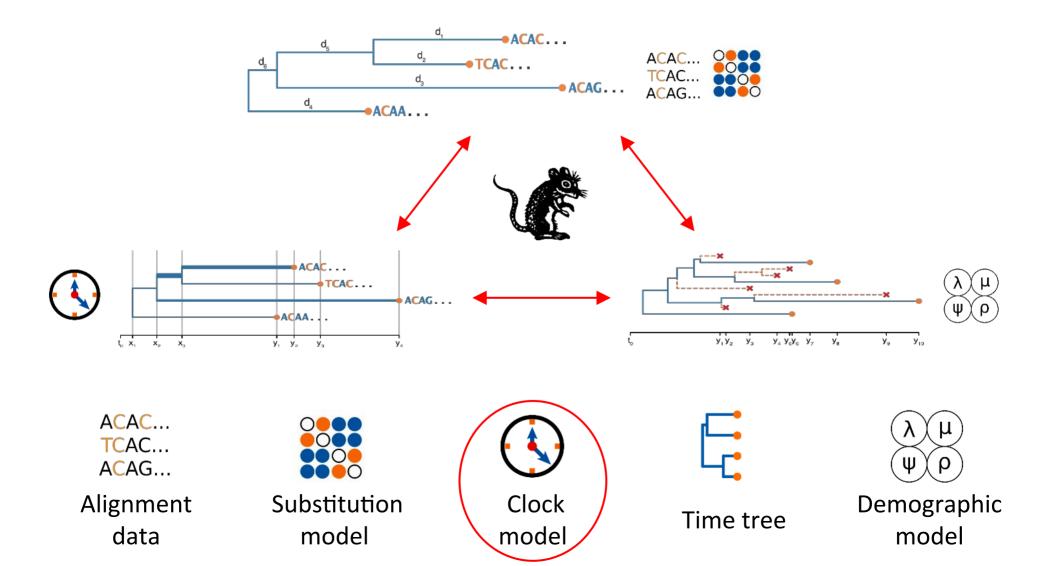


Substitution/site model

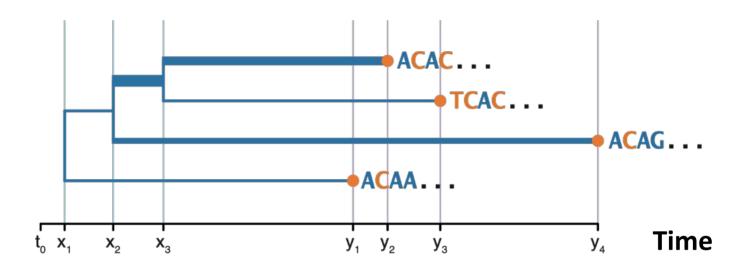


- · Links the genome sequences to the genealogy
- · We observe sequences at the tips, not their histories
- Not all substitutions are observed (multiple substitutions at the same site, reverse substitutions)

What goes into a **BEAST2** model?

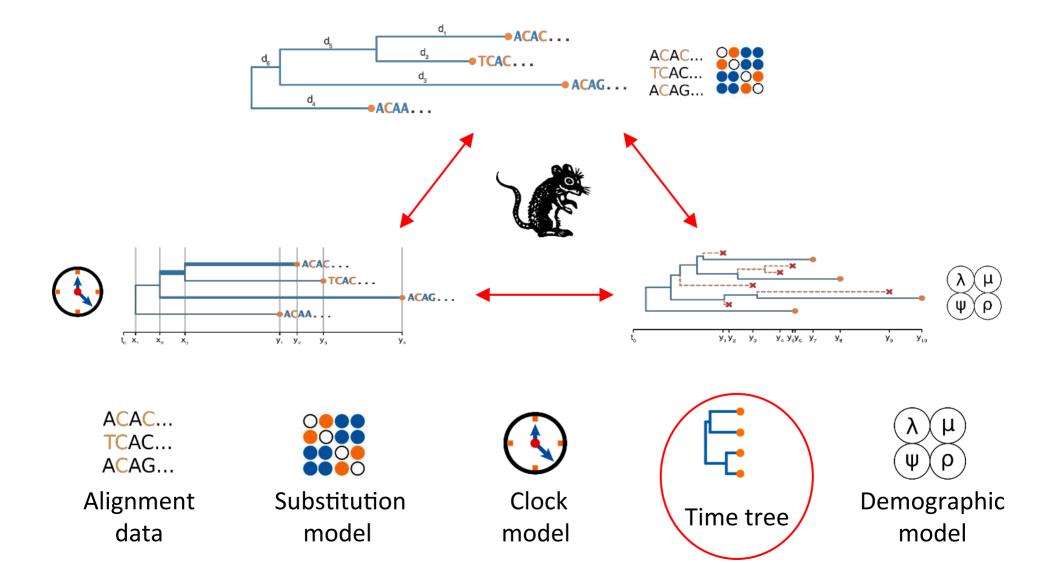


Molecular clock model

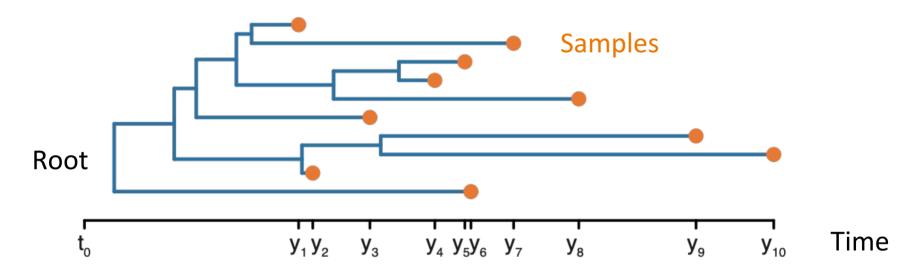


- Scales branch lengths to calendar time => how long does it take for substitutions to appear?
- · Different branches may have different clock rates
- Time information is needed to calibrate the clock

What goes into a **BEAST2** model?

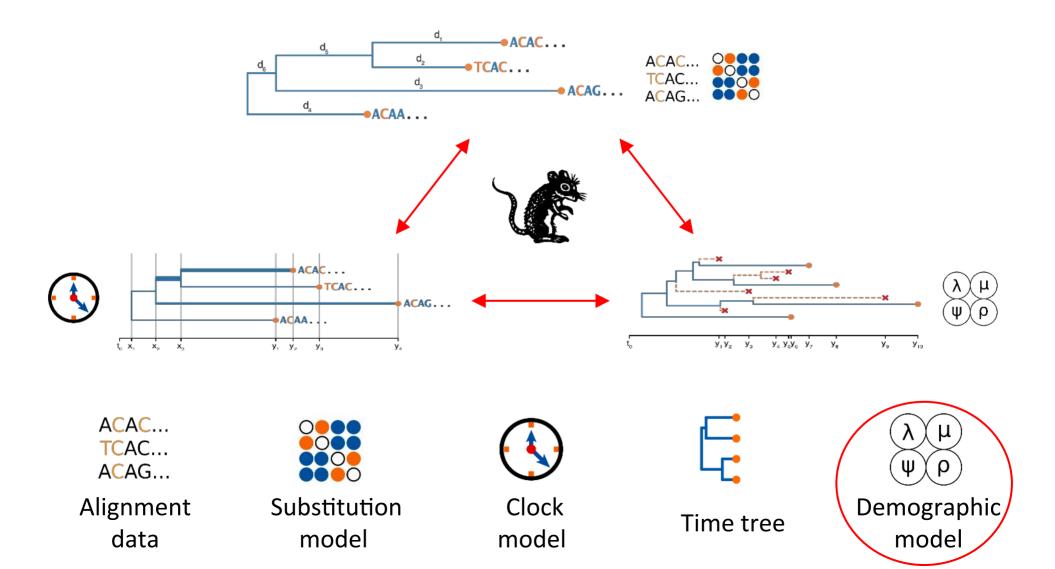


The phylogeny (tree)

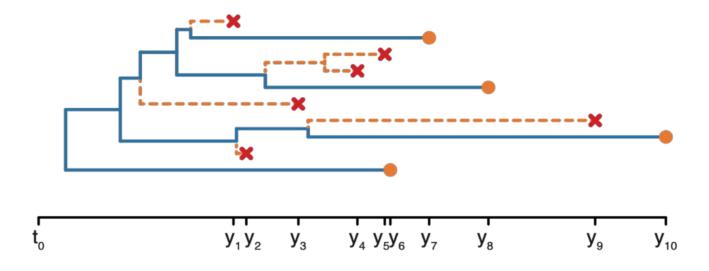


- · Phylogenies in phylodynamics are rooted, time trees
- Displays the ancestral relationships between the sampled sequences and the divergence times

What goes into a **BEAST2** model?

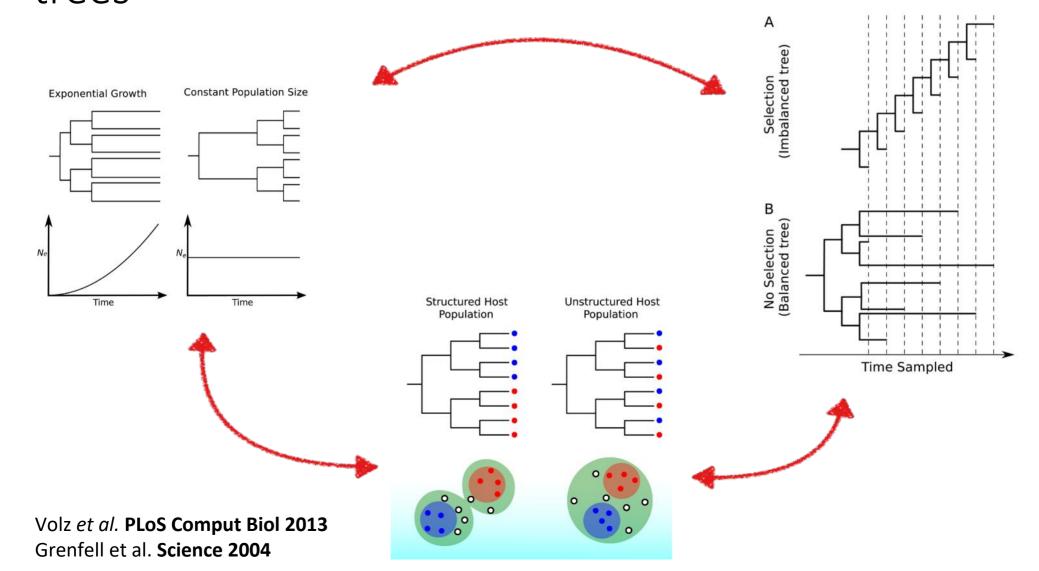


Demographic (tree) model

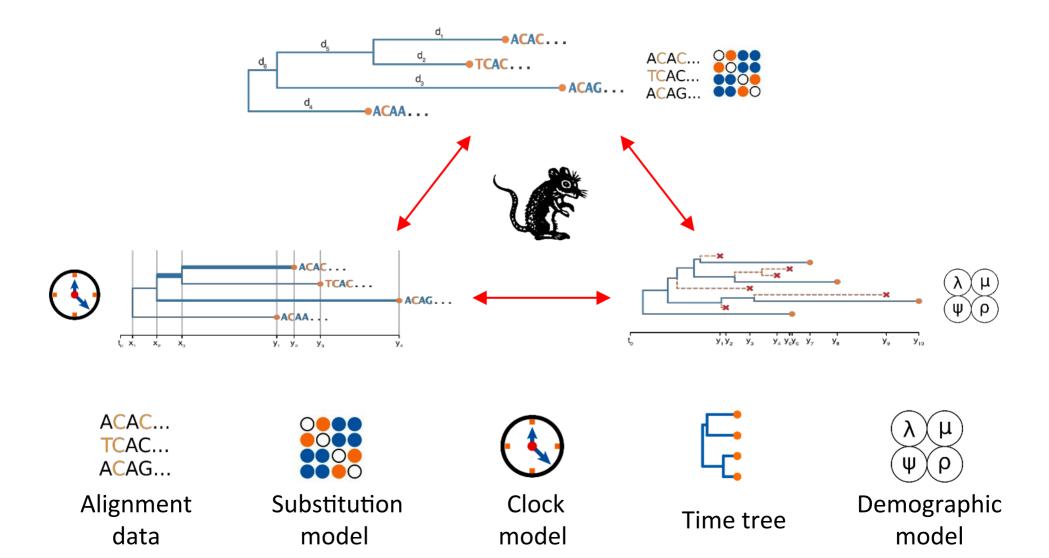


- Serves as tree prior (required since the tree is a parameter)
- Describes the population dynamics
 - How does the infected population grow over time?
 - How does the transmission rate change over time?
- Usually a birth-death or a coalescent model

Different population dynamics generate different trees



What goes into a **BEAST2** model?

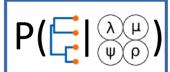


Final posterior distribution

Posterior

Phylogenetic Likelihood Phylodynamic likelihood

Model priors



ACAC... TCAC... ACAG...

Alignment data

Substitution model

Clock model

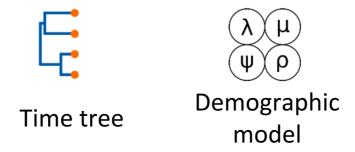
Time tree

Demographic model

Final posterior distribution – fixed tree

Phylodynamic likelihood

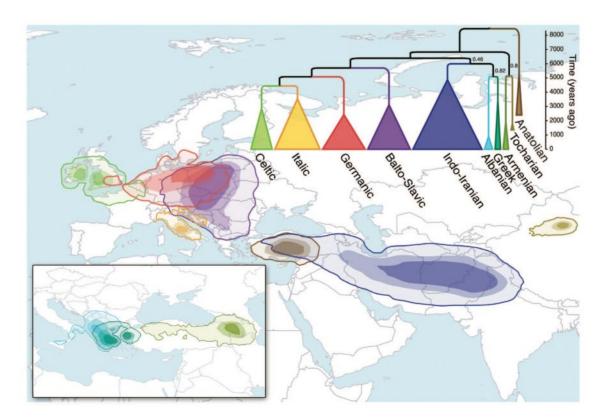
$$P(\begin{array}{c} P(\begin{array}{c} \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \hline P(\begin{array}{c} \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \hline P(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \hline P(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \\ \hline \end{array}) \end{array}) \begin{array}{c} P(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \hline P(\begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \\ \hline \end{array}) \end{array}$$
Posterior



Some special cases I

Site models don't have to be on nucleotides

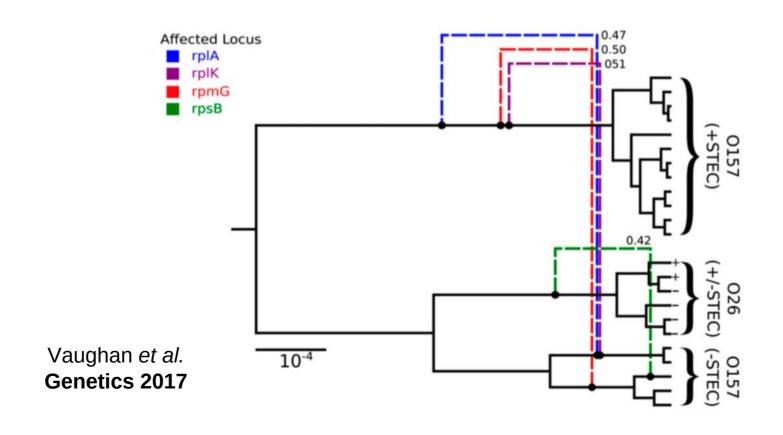
=> Could be on amino acids, morphological traits, roots of words etc.



Bouckaert *et al.* **Science 2012**

Special cases II

BEAST2 doesn't always use trees!



Inference in practice – calculating the posterior

But the tree is a parameter

How many trees are there?

$$T_n = (2n-3)!! = 1 \times 3 \times 5 \times ... \times 2n-5 \times 2n-3$$

Number of tips	4	5	6	7	8	9	10	20	48
Number of trees	15	105	945	10395	135135	2.0 x 10 ⁶	3.5 x 10 ⁷	8.2 x 10 ²¹	3.2 x 10 ⁷⁰

For realistic tree size (n = 136): $T_n = 2.1 \times 10^{267}$ => There are too many trees

Calculating the posterior

We want to calculate the posterior distribution

But we cannot easily calculate the marginal likelihood

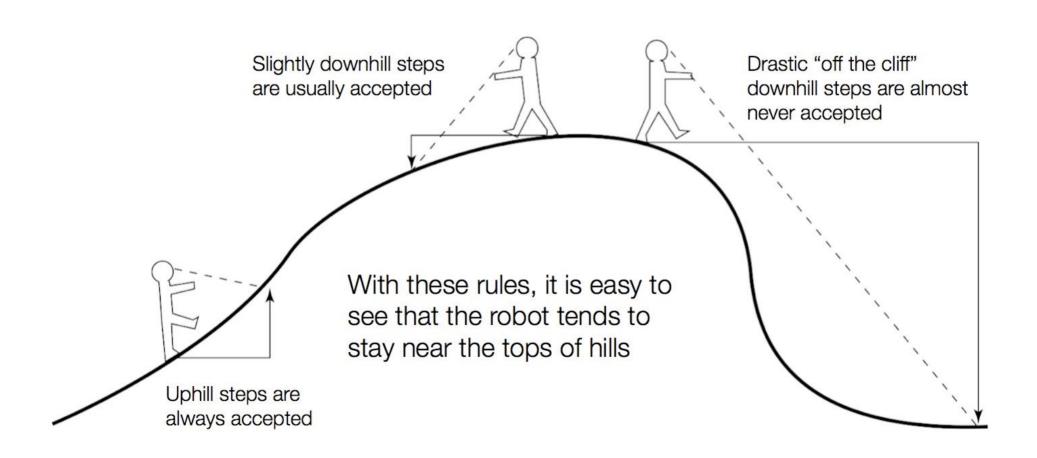
$$P(\frac{ACAC...}{TCAC...}) = ?$$

- => use **MCMC** (Markov-chain Monte Carlo)
- MCMC performs a random walk in the parameter space, sampling areas based on their posterior value

MCMC (Markov-chain Monte-Carlo)

- MCMC moves through the parameter space and looks for places with high posterior
- For each step we only need to compare which posterior density is higher
 - => so we only need the ratio of posteriors

MCMC robot (courtesy of Paul Lewis)



MCMC through parameter space

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH

Operators

- · MCMC steps through the state space and samples the posterior
- Operators/proposals are used to decide where to step to next
 => a parameter (or multiple parameters) are selected and modified to propose a step
- Operators are part of the algorithm, not the model
 the choice and configuration of operators only affects the efficiency of the algorithm
- How to configure operators?
 - Most operators can be tuned to change the size of proposed steps
 - Default operators by BEAUti + auto-tuning by BEAST2
 - Additional performance suggestions at the end of a run

Progress of an inference

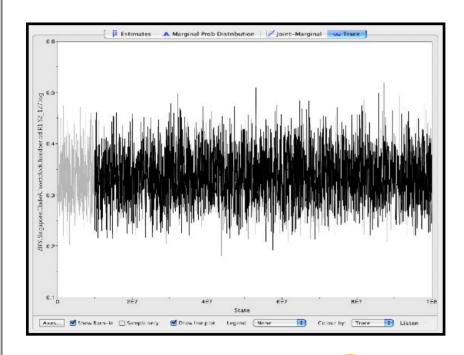
- Initial position set by the user or by BEAST2
- Burn-in phase: moving from the initial position to the high-posterior space
- Convergence phase: the inference has reached the high-posterior space – still moving but stable
- The posterior estimates are given only by samples taken after convergence

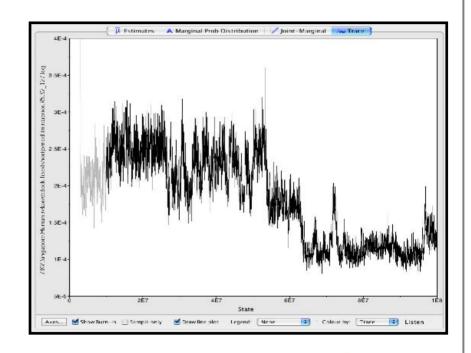
MCMC inference – when is it done?

- A proper MCMC inference is guaranteed to converge but not when!!
- · Results obtained before convergence are not reliable
- The number of steps needed depends on many factors
 - Complexity of the analysis (partitions, models, etc...)
 - Size of the dataset
 - Starting values
 - Efficiency of the implementation / operators

Convergence assessment

Looking at the traces





Not mixing!

The Effective Sample Size (ESS)

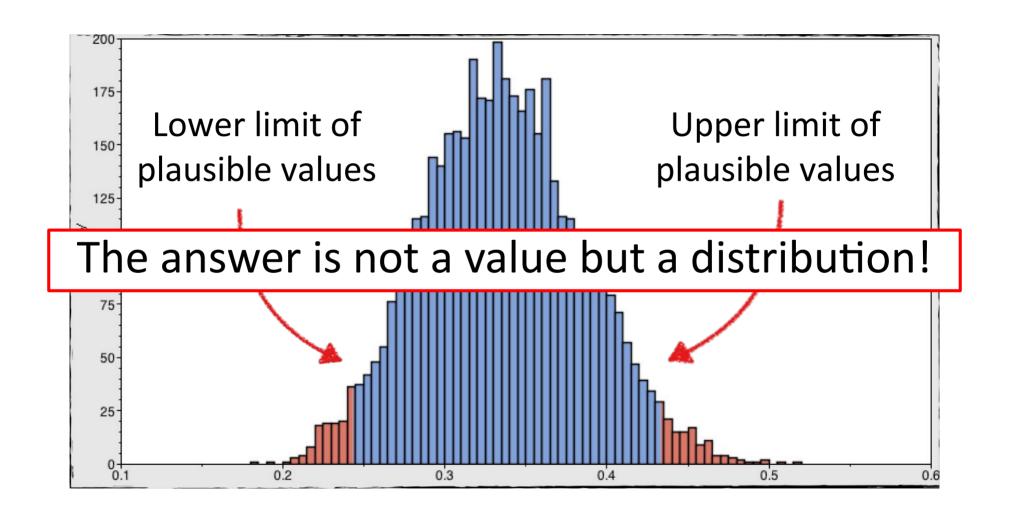
- In an MCMC, samples are correlated
 => number of samples in the chain (or the log) ≠ number of independent samples
- How do we estimate the number of independent samples?
 => the effective sample size (ESS)
- · ESS is specific to a particular inference **and** a particular parameter
- ESS > 200 is usually considered ok, more recently higher thresholds (500-600) have been proposed

What about tree convergence?

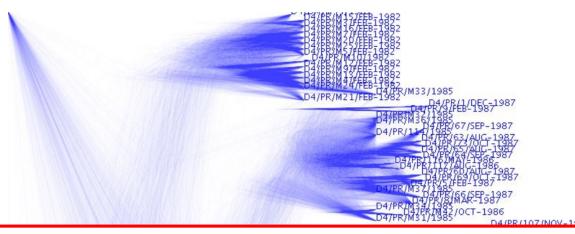
 Does not appear into Tracer but can be somewhat estimated from the other parameters

 Convenience (R package): estimates the ESS of splits in the tree
 https://github.com/lfabreti/convenience

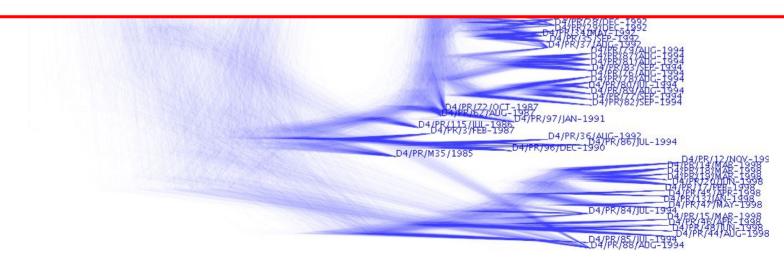
Final posterior estimate



Final posterior estimate (tree edition)



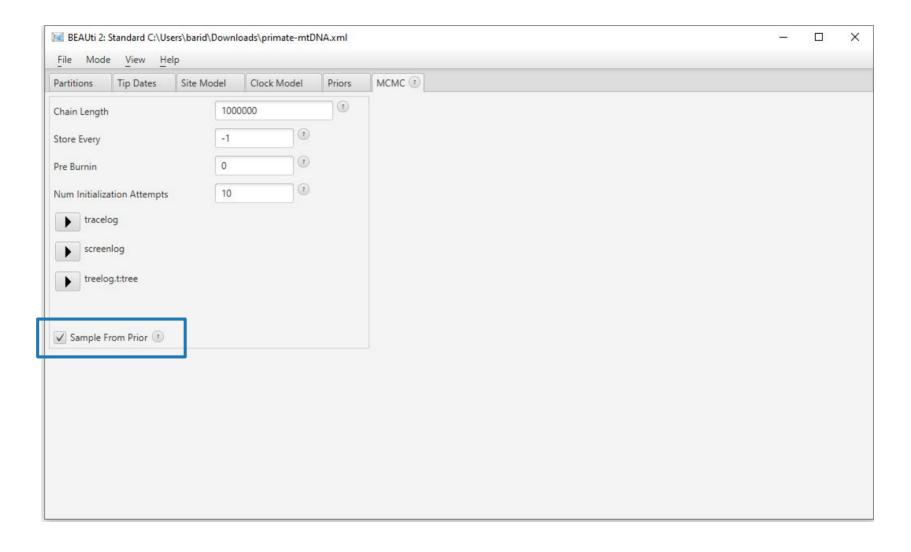
The answer is not a value but a distribution!

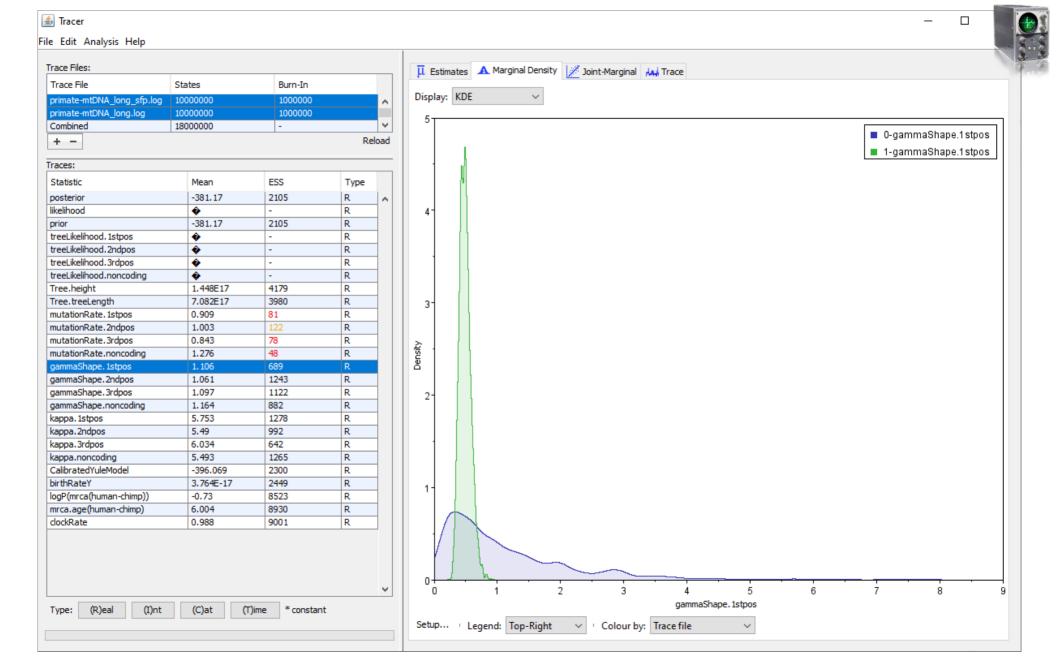


Sampling from the prior

- Bayesian analyses include priors on all parameters
 - the chosen priors affect the results
 - if priors interact, the effective prior can be different from the intended prior
- How do we know whether the results come from the data or from the priors?
 - => **Solution**: evaluate the results while removing the influence of the data

Sampling from the prior





Summary trees

• 0 0	TreeAnnotator v2.4.6	
Burnin percentage:	0	
Posterior probability limit:	0.0	
Target tree type:	Maximum clade credibility tree	
Node heights:	Common Ancestor heights	
Target Tree File:	not selected	Choose File
Input Tree File:	not selected	Choose File
Output File:	not selected	Choose File
Low memory:		
	Qu	uit Run

Summary trees

- Maximum A Posteriori (MAP) tree : sample with the highest posterior
- Maximum clade credibility (MCC) tree: sample with the highest clade score
- New method: Conditional Clade Distributions (CCD) trees
 - Based on the full distribution including unsampled trees
 - More accurate than MCC trees
 - Currently not available for FBD trees

Summary trees

NB: All summary methods produce a **filtered representation** of the full result

In all analyses:

- Check the posterior values at the splits
- · Check the uncertainty around the node ages
- · If the posterior is diffuse, check for **alternative** configurations in the distribution

BEAST2 best practices

Before you begin

- · Decide on plausible parameter values
- Plan for necessary vs unnecessary complexity
- · Check potential sources of error (e.g. sampling biases)

Before you run the analysis

- Ask someone else to look at your XML file
- · Decide on the length of the chain & sampling frequency
 - => Aim for **1,000 10,000** samples

Actually running the analysis

- Sample from the prior (run without data)
- · Run the analysis with multiple chains
- · (If necessary) re-evaluate the complexity

BEAST2 best practices

After the analysis

- Assess convergence and mixing
- Combine the chains
- Examine the full posterior distribution

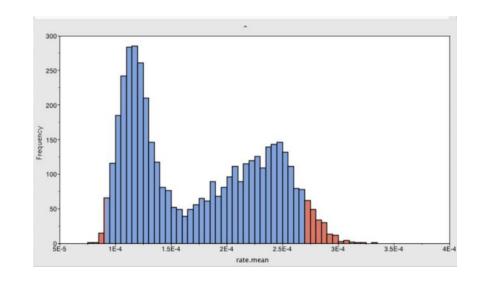
For future researchers

- · Keep all input files (Sequences were aligned manually...)
- Keep the final result files (PDF is **not** a tree format)
- Keep the pre and post-processing code

Bayesian inference: pros and cons

Pros

- Complete posterior distribution
 => good with uncertain and complex scenarios
- Use of priors => uses results from previous studies and biological knowledge



· Cons

- (Very) computationally expensive
- Use of priors => more complex analysis setup
- · Convergence can be a major issue