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What is inference ? |
Explanations
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Requirements for inference
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Inference = optimizing parameters within a model
to fit observations



What is probability ? —

Frequentist approach

- Based on repeated experiments

- N = 1000 dice rolls, n =210 rolls with value 5
=> P(dice =5) =n/N =0.21

Issues
- Assumes that experiments can be repeated
- Assumes that the underlying system is random



What is probability ? e

Bayesian approach

+ P(dice =5
P(dice =5
P(dice =5

- Probability measures how plausible an outcome is
pased on available information

no information) = 1/6
dice is unfair) = 0.01
perfect information) =1

=> Probability expresses the level of certainty



Requirements for inference
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Inference = optimizing parameters within a model
to fit observations



Generative models of evolution
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The data is the outcome of the model
=> we can calculate P(data|parameters)



Inference based on generative models

- What we want: P(parameters| ) probability of
model parameters given our observed data

- What we have: P( |parameters) likelihood i.e.

probability of generating the data given the model
parameters

- Maximum likelihood approach

=> Use the likelihood P( | parameters) as ranking
function



Deep learning approach
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Bayes’ theorem for inference

f Likelihood

P(param|data) = P(data|param) P(param)

P(data)
& Posterior - T

Prior
Marginal likelihood

of the data




Bayes’ theorem for inference

The data and model parameters are described by probabilities

- Prior : P(param) => the range of plausible parameter values
NB : All model parameters have priors

- Likelihood : P( | param) => the likelihood is proportional to
the probability of observing the data given a hypothesis

- Posterior : P(param| ) => combines information from the
data (likelihood) and previous knowledge (prior)

- Marginal likelihood : P( ) => probability of the data given the
chosen model(s) over all possible parameter values



A note on priors

- Priors should be distinct from the data
- Previous literature (on a different dataset)
- Knowledge of biological processes

- Estimates are influenced by both priors and data

- Are other types of analyses free of priors?
- ML inference : all values are equally likely — implicit uniform prior
- DL inference : priors given by the training dataset

- More generally : post-processing choices are priors
e.g. investigating further a value which seems absurd



Bayesian phylogenetic and phylodynamic tools

* BEAST & BEAST?2

* MrBayes & RevBayes

* PhyloBayes (focus on protein alignments)
- Bali-Phy (estimating the alignment)

* SCAR (focus on recombination)

* Many more.....

Bayesian evolutionary analysis by sampling trees



What goes into a BEAST2 model?
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| ACAC...
The alignment data AC...

ACAG...

* Typically an alignment of DNA or RNA sequences
* Can also be amino acids or codons
* Sampled at one point in time or several

- |s often split into multiple partitions
* Multiple genes

* 1st, 2nd and 3rd codon positions



What goes into a BEAST2 model?
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Substitution/site model
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* Links the genome sequences to the genealogy
* We observe sequences at the tips, not their histories

* Not all substitutions are observed (multiple
substitutions at the same site, reverse substitutions)



What goes into a BEAST2 model?
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Molecular clock model @
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- Scales branch lengths to calendar time => how long
does it take for substitutions to appear?

- Different branches may have different clock rates

- Time information is needed to calibrate the clock



What goes into a BEAST2 model?
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The phylogeny (tree) E;
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* Phylogenies in phylodynamics are rooted, time trees

* Displays the ancestral relationships between the
sampled sequences and the divergence times



What goes into a BEAST2 model?
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Demographic (tree) model
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- Serves as tree prior (required since the tree is a parameter)

- Describes the population dynamics
- How does the infected population grow over time?
- How does the transmission rate change over time?

- Usually a birth-death or a coalescent model




Different population dynamics generate different
trees
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What goes into a BEAST2 model?
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Final posterior distribution
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Final posterior distribution — fixed tree
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Some special cases |

Site models don’t have to be on nucleotides
=> Could be on amino acids, morphological traits, roots of words etc.
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Bouckaert et al.
Science 2012




Special cases I

BEAST2 doesn’t always use trees!

Affected Locus
B rplA
B plkK
B pmG
B rpsB

Vaughan et al.
Genetics 2017
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Inference in practice — calculating the posterior

P(param| ) = P( |param) P(param)
o Pldata)

P( ) = IP( |param)

All possible param values

But the tree is a parameter



How many trees are there ?

Tn=(2n—=3)11=1x3x5x..x2n=5x2n-3

Number of tips

8

10

20

48

Number of trees

15

105

945

10395

135135

2.0 x 106

3.5 x 107

8.2 x 10%

3.2 x 107

For realistic tree size (n = 136): T,=2.1x 10’

=> There are too many trees




Calculating the posterior
- We want to calculate the posterior distribution
PERO LI
1 W0 | achs

- But we cannot easily calculate the marginal likelihood
P(15) =2
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=> use MCMC (Markov-chain Monte Carlo)

- MCMC performs a random walk in the parameter space,
sampling areas based on their posterior value



MCMC (Markov-chain Monte-Carlo)

- MCMC moves through the parameter space and looks for
places with high posterior

- For each step we only need to compare which posterior
density is higher
=> 5o we only need the ratio of posteriors

P( | model:) P(model,)
P(model. ) _ Rleterta)
P(model. ) P( | model,) P(model,)

Rletert)



MCMC robot (courtesy of Paul Lewis)

Drastic “off the cliff”
. downhill steps are almost
+_ hever accepted

Slightly downhill steps ’E‘:ﬂ
are usually accepted

/7:,:5 o With these rules, it is easy to
L T see that the robot tends to
stay near the tops of hills

/Jphil[ steps are
always accepted



MCMC through parameter space

https://chi-feng.github.io/mcmc-demo
/app.html?algorithm=RandomWalkMH


https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH

Operators

- MCMC steps through the state space and samples the posterior

- Operators/proposals are used to decide where to step to next

=> 3 parameter (or multiple parameters) are selected and modified to
propose a step

- Operators are part of the algorithm, not the model

=> the choice and configuration of operators only affects the efficiency
of the algorithm

- How to configure operators?
- Most operators can be tuned to change the size of proposed steps
- Default operators by BEAUti + auto-tuning by BEAST2
- Additional performance suggestions at the end of a run



Progress of an inference

- Initial position — set by the user or by BEAST?2

- Burn-in phase: moving from the initial position to the
high-posterior space

- Convergence phase: the inference has reached the
high-posterior space — still moving but stable

- The posterior estimates are given only by samples
taken after convergence



MCMC inference — when is it done?

- A proper MCMC inference is guaranteed to converge —
but not when!!

- Results obtained before convergence are not reliable

- The number of steps needed depends on many factors
- Complexity of the analysis (partitions, models, etc...)
- Size of the dataset
- Starting values
- Efficiency of the implementation / operators



Conve rgence assessment
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The Effective Sample Size (ESS)

- In an MCMC, samples are correlated

=> number of samples in the chain (or the log) # number of
independent samples

- How do we estimate the number of independent samples?
=> the effective sample size (ESS)

- ESS is specific to a particular inference and a particular
parameter

- ESS > 200 is usually considered ok, more recently higher
thresholds (500-600) have been proposed



Trace Files:

Trace File

primate-mtDNA.... | 1000000

Tracer

v Marginal Density

|# Joint-Marginal

fad Trace

Summary Statistic

mean
stderr of mean

stdev

variance

median

value range

geometric mean

95% HPD interval
auto-correlation time (ACT)
effective sample size (ESS)
number of samples

posterior

-5515.4884

0.2487

4.0176

16.141

-5515.0556

[-5531.8494, -5504.8478]
n/a

[-5523.3461, -5508.1268]
3449.4716

261

4501

= Reload
Traces:

Statistic ESS
likelihood -5442.... 335 R
prior -73.432 R
treeLikelihood. 1stpos -1383.... 502 R
treeLikelihood.2ndpos  -952.555 321 R
treeLikelihood. 3rdpos -2148.... 202 R
treeLikelihood.noncod... -957.464 00 R
TreeHeight 85.181 235 R
mutationRate. 1stpos 0.451 4 R
mutationRate.2ndpos 0.179 12 R
mutationRate.3rdpos 2.955 96 R
mutationRate.noncoding 0.34 A R
gammaShape.1stpos 0.477 105 R
gammaShape.Zndpos  0.553 76 R
gammashape.3rdpos 2.998 98 R
gammaShape.noncodi... 0.249 88 R
kappa.lstpos 6.424 86 R
kappa.2ndpos 8.681 79 R
kappa.3rdpos 29.35 42 R
kappa.noncoding 13.619 69 R
CalibratedYuleModel -47.452 320 R
birthRateY 2.547E-2 731 R
logP(mrcathuman-chi... -0.744 4203 R
mrcatime(human-chi... 5.95 2567 R
clockRate 1.165E-2 391 R
Type: (Ryeal (Iint (Chat

Fragquanay

250

200+

1504

1004

50

0
-5535

Setup...

-5520

-56515

posterior

* Bins: 50 B

-5500




Tracer

4 Marginal Density

|# Joint-Marginal ~ Aad Trace

Summary Statistic

mean
stderr of mean

stdev

variance

median

value range

geometric mean

95% HPD interval
auto-correlation time (ACT)
gffective sample size (ESS)
number of samples

posterior

-5515.1348

0.0786

3.8428

14.7672

-5514.7368
[-5533.9705, -5505.0922]
n/a

[-5523.187, -5508.5802]
3770.478

2387.2

9001

Trace Files:

Trace File States Burn-Iin
primate-miDNA.... 1000000 100000
= Reload
Traces:

Statistic Mean ESS
R
likelihood -5441.... 2349 R
prior -73.169 1379 R
treeLikelihood. 1stpos -1383.... 3189 R
treeLikelihood.2ndpos  -952.37 2885 R
treelLikelihood.3rdpos -2148.... 1687 R
treelikelihood.noncod... -957.267 1731 R
TreeHeight 83.827 1409 R
mutationRate. Lstpos 0.45 852 R
mutationRate.2ndpos 0.182 714 R
mutationRate.3rdpos 2.949 646 R
mutationRate.noncodi... 0.346 1344 R
gammaShape. 1stpos 0.496 889 R
gammaShape.Zndpos  0.575 911 R
gammaShape.3rdpos 3.022 726 R
gammaShape.noncodi... 0.244 1006 R
kappa.lstpos 6.235 719 R
kappa.2Zndpos 8.5 1359 R
kappa.3rdpos 28777 365 R
kappa.noncoding 13.478 875 R
CalibratedYuleModel -47.285 1755 R
birthRateY 2.561E-2 3805 R
logP(mrcathuman-chi... -0.731 9001 R
mrcatime(human-chi... 5.949 8655 R
clockRate 1.161E-2 1836 R
Type: (Rieal (Iint (Chat

Fraguency

500

400+

300+

2007

1004

-5520

-5515

posterior

-5500




What about tree convergence?

- Does not appear into Tracer but can be somewhat
estimated from the other parameters

- RWTY (R package): estimates the ESS of the overall

tree topology https://cran.r-project.org/package=rwty

- Convenience (R package): estimates the ESS of splits

in the tree https://github.com/Ifabreti/convenience


https://cran.r-project.org/package=rwty
https://github.com/lfabreti/convenience
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Final posterior estimate (tree edition)
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Sampling from the prior

- Bayesian analyses include priors on all parameters

- the chosen priors affect the results

- if priors interact, the effective prior can be different from
the intended prior

- How do we know whether the results come from the
data or from the priors?

=> Solution: evaluate the results while removing the
influence of the data



Sampling from the prior

J& BEAUL 2: Standard C\Users\barid\Downloads\primate-mtDNAxml
File Mode \View Help

Partitions Tip Dates Site Model Clock Model Priors MCMC (7

Chain Length 1000000

Stere Every =1 ;

Pre Burnin 0 !

Num Initialization Attempts 10 d
3 tracelog

3 screenlog

3 treelog.titree

2

v/| Sample From Prior




|£| Tracer — O
File Edit Analysis Help

Trace Files: rl. Estimates &k Marginal Density |£Joint—MarginaI dad Trace
Trace File States Burn-In
primate-mtDNA_long_sfp.log | 10000000 1000000 Display: | KDE ~
primate-mtDMNA_long.log 10000000 1000000 5
Combined 18000000 - hd
ra— Reload B O-gammaShape.1stpos
B 1-gammaShape.1stpos
Traces:
Statistic Mean ES5 Type
posterior -381.17 2105 R -~
likelihood 73 - R 4
prior -381.17 2105 R
treelikelihood. 1stpos L3 - R
treeLikelihood. 2ndpos LS - R
treelikelihood. 3rdpos L3 - R
treelikelihood.noncoding LS - R
Tree.height 1.448E17 4179 R
Tree.treelength 7.082E17 3880 R kR
mutationRate, 1stpos 0,908 81 R
mutationRate, 2ndpos 1.003 122 R
mutationRate, Irdpos 0.843 7a R o
mutationRate. noncoding 1.276 48 R J“é
gammashape. 1stpos L &
gammashape. 2ndpos 1.061 1243 R
gammashape, 3rdpos 1.087 1122 R 74
gammashape.noncoding 1.164 882 R
kappa. lstpos 5.753 1278 R
kappa. 2ndpos 5.45 992 R
kappa.3rdpos 5.034 542 R
kappa.noncoding 5.453 1265 R
CalibrateduleModel -396.069 2300 R
birthRiate 3. 709E-17 2949 R 1
logP{mrca(human-chimp)) 40,73 8523 R
mrca. age(human-chimp) 6.004 8930 R
dockRate 0,988 9001 R
U T T T T T T T T
hd 0 1 2 3 4 ] G 7 g ]
Type: (Rjeal (Iint (Clat (Time * constant gammashape. 1stpos
Setup... ' Legend: | Top-Right w« | Colour by: | Trace file e




Summary trees

@ TreeAnnotator v2.4.6

Burnin percentage: 0

Posterior probability limit: 0.0

o

Target tree type: Maximum clade credibility tree

Node heights: Common Ancestor heights

Target Tree File: not selected Choose File...
Input Tree File: not selected Choose File...
Output File:  not selected Choose File...

Low memory:

Quit Run




Summary trees

- Maximum A Posteriori (MAP) tree : sample with the highest
posterior

- Maximum clade credibility (MCC) tree: sample with the
highest clade score

- New method: Conditional Clade Distributions (CCD) trees
- Based on the full distribution including unsampled trees

« More accurate than MCC trees
- Currently not available for FBD trees



Summary trees

NB: All summary methods produce a filtered
representation of the full result

In all analyses:
- Check the posterior values at the splits
- Check the uncertainty around the node ages

- If the posterior is diffuse, check for alternative
configurations in the distribution



BEAST2 best practices

Before you begin

- Decide on plausible parameter values

- Plan for necessary vs unnecessary complexity

- Check potential sources of error (e.g. sampling biases)

Before you run the analysis

- Ask someone else to look at your XML file

- Decide on the length of the chain & sampling frequency
=> Aim for 1,000 — 10,000 samples

Actually running the analysis

- Sample from the prior (run without data)
- Run the analysis with multiple chains

- (If necessary) re-evaluate the complexity



BEAST2 best practices

After the analysis

- Assess convergence and mixing

- Combine the chains

- Examine the full posterior distribution

For future researchers

- Keep all input files (Sequences were aligned manually...)
- Keep the final result files (PDF is not a tree format)

- Keep the pre and post-processing code



Bayesian inference: pros and cons

- Pros

- Complete posterior distribution
=> good with uncertain and
complex scenarios

- Use of priors => uses results ' [
from previous studies and ] J
biological knowledge LT T

aaaaaaaaa

- Cons

- (Very) computationally expensive
- Use of priors => more complex analysis setup
- Convergence can be a major issue
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