
Introduction to 
Bayesian phylogenetic inference

Joëlle Barido-Sottani



What is inference ?

ACAGACTTTCAGACTTTCAGACCC
ACACACCTACAGACTTACAGACCC
TCAGACTTTCACACCTTCAGACCT
TCACACCTACACACCCACAGACTT
TCACACCTACACACCCACAGACTT
TCAGACTTTCACACCTTCAGACCT

Observations

Explanations



Requirements for inference

Choice of 
model

Inference = optimizing parameters within a model 
to fit observations

Ranking 
function P(  |     ) P(  |     ) P(  |     ) P(  |     )



What is probability ?

Frequentist approach
 Based on repeated experiments
 N = 1000 dice rolls, n = 210 rolls with value 5

=> P(dice = 5) = n/N = 0.21

Issues
 Assumes that experiments can be repeated
 Assumes that the underlying system is random



What is probability ?

Bayesian approach
 Probability measures how plausible an outcome is 

based on available information
 P(dice = 5 | no information) = 1/6

P(dice = 5 | dice is unfair) = 0.01
P(dice = 5 | perfect information) = 1

=> Probability expresses the level of certainty



Requirements for inference

Choice of 
model

Ranking 
function

Inference = optimizing parameters within a model 
to fit observations

P(  |     ) P(  |     ) P(  |     ) P(  |     )



Generative models of evolution

The data is the outcome of the model
=> we can calculate P(data|parameters)

ACTGT...

TCGGT...



Inference based on generative models

• What we want: P(parameters|data) probability of 
model parameters given our observed data

• What we have: P(data|parameters) likelihood i.e. 
probability of generating the data given the model 
parameters

• Maximum likelihood approach
=> Use the likelihood P(data|parameters) as ranking 
function



Deep learning approach

Simulation

Trained Neural Network



Bayes’ theorem for inference

Likelihood

Posterior

Marginal likelihood 
of the data

P(param|data) =  P(data|param) P(param)
P(data)

Prior



Bayes’ theorem for inference

The data and model parameters are described by probabilities

• Prior : P(param) => the range of plausible parameter values
   NB : All model parameters have priors

• Likelihood : P(data|param) => the likelihood is proportional to 
the probability of observing the data given a hypothesis

• Posterior : P(param|data)  => combines information from the 
data (likelihood) and previous knowledge (prior)

• Marginal likelihood : P(data) => probability of the data given the 
chosen model(s) over all possible parameter values



A note on priors

• Priors should be distinct from the data
 Previous literature (on a different dataset)
 Knowledge of biological processes

• Estimates are influenced by both priors and data

• Are other types of analyses free of priors?
 ML inference : all values are equally likely – implicit uniform prior
 DL inference : priors given by the training dataset
 More generally : post-processing choices are priors

e.g. investigating further a value which seems absurd



Bayesian phylogenetic and phylodynamic tools

• BEAST & BEAST2
• MrBayes & RevBayes
• PhyloBayes (focus on protein alignments)
• Bali-Phy (estimating the alignment)
• SCAR (focus on recombination) 
• Many more…..



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



• Typically an alignment of DNA or RNA sequences

• Can also be amino acids or codons

• Sampled at one point in time or several

• Is often split into multiple partitions
 Multiple genes
 1st, 2nd and 3rd codon positions

The alignment data



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



• Links the genome sequences to the genealogy
• We observe sequences at the tips, not their histories
• Not all substitutions are observed (multiple 

substitutions at the same site, reverse substitutions) 

Substitution/site model

Genetic distance from common ancestor
(πT, πC, πA, πG)

+

A T C G
A
T
C
G



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



Time

Molecular clock model

• Scales branch lengths to calendar time => how long 
does it take for substitutions to appear?

• Different branches may have different clock rates
• Time information is needed to calibrate the clock



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



• Phylogenies in phylodynamics are rooted, time trees
• Displays the ancestral relationships between the 
sampled sequences and the divergence times

The phylogeny (tree)

Root

Samples

Time



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



• Serves as tree prior (required since the tree is a parameter)
• Describes the population dynamics

 How does the infected population grow over time?
 How does the transmission rate change over time?

• Usually a birth-death or a coalescent model

Demographic (tree) model



Volz et al. PLoS Comput Biol 2013
Grenfell et al. Science 2004

Different population dynamics generate different 
trees



What goes into a BEAST2 model?

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



Final posterior distribution

P(      |           )  P(   |      )  P(                 )

P(      ) 

Phylogenetic 
Likelihood

Phylodynamic 
likelihood Model priors

Posterior

P(             |      ) = 

Alignment 
data

 Substitution 
model

 Clock 
model  Time tree Demographic 

model



Final posterior distribution – fixed tree

P(   |      )  P(       )

P(      ) 

Phylodynamic likelihood

Model priors

Posterior

P(       |     )  = 

 Time tree Demographic 
model



Site models don’t have to be on nucleotides
=> Could be on amino acids, morphological traits, roots of words etc.

Some special cases I

Bouckaert et al. 
Science 2012



Special cases II

BEAST2 doesn’t always use trees!

Vaughan et al. 
Genetics 2017



Inference in practice – calculating the posterior

P(param|data) =  P(data|param) P(param)
P(data)

P(data) = ∫P(data|param)
All possible param values

But the tree is a parameter



How many trees are there ?

Tn = (2n – 3)!! = 1 x 3 x 5 x … x 2n – 5 x 2n – 3

Number of tips 4 5 6 7 8 9 10 20 48

Number of trees 15 105 945 10395 135135 2.0 x 106 3.5 x 107 8.2 x 1021 3.2 x 1070

For realistic tree size (n = 136):  Tn = 2.1 x 10267

=> There are too many trees



• We want to calculate the posterior distribution

• But we cannot easily calculate the marginal likelihood

=> use MCMC (Markov-chain Monte Carlo)

• MCMC performs a random walk in the parameter space, 
sampling areas based on their posterior value

Calculating the posterior

P(      ) = ? 

P(             |      ) = 



P(data | model2) P(model2)
P(data)

P(data | model1) P(model1)
P(data)

MCMC (Markov-chain Monte-Carlo)

• MCMC moves through the parameter space and looks for 
places with high posterior

• For each step we only need to compare which posterior 
density is higher
=> so we only need the ratio of posteriors

P(model1 | data)
P(model2 | data) =



MCMC robot (courtesy of Paul Lewis)



MCMC through parameter space

https://chi-feng.github.io/mcmc-demo
/app.html?algorithm=RandomWalkMH

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH


• MCMC steps through the state space and samples the posterior

• Operators/proposals are used to decide where to step to next
=> a parameter (or multiple parameters) are selected and modified to 
propose a step

• Operators are part of the algorithm, not the model
=> the choice and configuration of operators only affects the efficiency 
of the algorithm

• How to configure operators?
 Most operators can be tuned to change the size of proposed steps 
 Default operators by BEAUti + auto-tuning by BEAST2
 Additional performance suggestions at the end of a run

Operators



Progress of an inference

• Initial position – set by the user or by BEAST2

• Burn-in phase: moving from the initial position to the 
high-posterior space

• Convergence phase: the inference has reached the 
high-posterior space – still moving but stable

• The posterior estimates are given only by samples 
taken after convergence



MCMC inference – when is it done?

• A proper MCMC inference is guaranteed to converge – 
but not when!!

• Results obtained before convergence are not reliable

• The number of steps needed depends on many factors
 Complexity of the analysis (partitions, models, etc...)
 Size of the dataset
 Starting values
 Efficiency of the implementation / operators



Convergence assessment

Mixing well! 😄 Not mixing! 😭

Looking at the traces



The Effective Sample Size (ESS)

• In an MCMC, samples are correlated
=> number of samples in the chain (or the log) ≠ number of 
independent samples

• How do we estimate the number of independent samples?
=> the effective sample size (ESS)

• ESS is specific to a particular inference and a particular 
parameter

• ESS > 200 is usually considered ok, more recently higher 
thresholds (500-600) have been proposed



 
 



 
 



 
 

What about tree convergence?

• Does not appear into Tracer but can be somewhat 
estimated from the other parameters

• RWTY (R package): estimates the ESS of the overall 
tree topology

• Convenience (R package): estimates the ESS of splits 
in the tree

https://cran.r-project.org/package=rwty

https://github.com/lfabreti/convenience

https://cran.r-project.org/package=rwty
https://github.com/lfabreti/convenience


Upper limit of 
plausible values

Lower limit of 
plausible values

Final posterior estimate

The answer is not a value but a distribution!



Final posterior estimate (tree edition)

The answer is not a value but a distribution!



Sampling from the prior

• Bayesian analyses include priors on all parameters 
 the chosen priors affect the results
 if priors interact, the effective prior can be different from 

the intended prior

• How do we know whether the results come from the 
data or from the priors?

=> Solution: evaluate the results while removing the 
influence of the data



Sampling from the prior





Summary trees



Summary trees

• Maximum A Posteriori (MAP) tree : sample with the highest 
posterior

• Maximum clade credibility (MCC) tree: sample with the 
highest clade score

• New method: Conditional Clade Distributions (CCD) trees
 Based on the full distribution including unsampled trees
 More accurate than MCC trees
 Currently not available for FBD trees



Summary trees

NB: All summary methods produce a filtered 
representation of the full result

In all analyses:
• Check the posterior values at the splits
• Check the uncertainty around the node ages
• If the posterior is diffuse, check for alternative 

configurations in the distribution



BEAST2 best practices
Before you begin
• Decide on plausible parameter values
• Plan for necessary vs unnecessary complexity
• Check potential sources of error (e.g. sampling biases)

Before you run the analysis
• Ask someone else to look at your XML file
• Decide on the length of the chain & sampling frequency

=> Aim for 1,000 – 10,000 samples

Actually running the analysis
• Sample from the prior (run without data)
• Run the analysis with multiple chains
• (If necessary) re-evaluate the complexity



BEAST2 best practices

After the analysis
• Assess convergence and mixing
• Combine the chains
• Examine the full posterior distribution

For future researchers 
• Keep all input files (Sequences were aligned manually…)
• Keep the final result files (PDF is not a tree format)
• Keep the pre and post-processing code



Bayesian inference: pros and cons

• Cons
 (Very) computationally expensive
 Use of priors => more complex analysis setup
 Convergence can be a major issue

• Pros
 Complete posterior distribution 

=> good with uncertain and 
complex scenarios

 Use of priors => uses results 
from previous studies and 
biological knowledge
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