Introduction to spatial data in R for paleontologists

Ádám T. Kocsis

Friedrich-Alexander-Universität Erlangen-Nürnberg

2025-08-22

Basic Concepts

Where, what, why?

GIS basics

G(eographic) I(nformation) S(ystems/oftware) are everywhere

- Science
- Civil Engineering
- Aeronautics
- Military
- Economics
- etc.

Vital in Earth Sciences

G(eographic) I(nformation) S(ystems) are everywhere

topography

geology

• paleontology

climate

• geophysics

ecology

Basic data types

- Similar to computer graphics
- Sometimes in 3D

Basic data types

- Similar to computer graphics
- Sometimes in 3D

Vector data

- Structure is defined with points that have coordinates
- Spherical coordinates, Cartesian too, or projection-specific
- Additional attributes are rendered to the entities
- 3 primary kind

Lines

Polygons (shapes)

Raster data

- Structure is defined by a grid, data is a lattice of values
- The field view of Earth
- Similar to raster graphics, but with georeferencing

Geographic coordinates

- Based on polar coordinates
- φ: latitude
 - [-90°, 90°], equator : 0°
- θ: longitude
 - [-180°, 180°], 0°: prime meridian
- r: elevation

Geocentric coordinates

- x, y, z, Earth-Centered Coordinate System
- Based on center of mass, equator and PM
- Used for satellite tracking and navigation (e.g. GPS)
- WGS84 datum

Projection based coordinate systems

- Surface: a 2-dimensional map
- Traditionally: Cartography
- Especially nautical applications

Spheres and Circles

- There are no straight lines
- All points are connected by arcs, either along a great or small circles

Path of the ISS

Latitude [-90,90°]

- Latitudinal circles: parallels
- The only great circle is the equator!
- Length decrease with a cosine function of latitude
- 10° wide zone has different area at different latitudes
- Direction: zonal (u)
- Notable circles:

Longitude [-180,180°]

- Latitudinal circles: meridians
- All of them are great circles!
- Their distance decreases at the poles
- Direction: meridional (v)
- Notable circle:

Distances

- Two points define a great circle
- Shortest distance between them is a great circle arc (Great Circle Distance)
- Distance on a surface of a sphere is simplest in angles (degrees)
- For practicality we give this in distance:
- 1° (longitude) ~ 111.1 km
- 1' (longitude) = 1 nautical mile ~ 1.8km

Directions

- Heading: angular distance to north (azimuth)
- Going straight: great circle
- Constant change of heading! (even without the true vs. magnetic difference)

Vectors

 Given with a) initial heading and magnitude or b) as zonal and meridional components

Mercator projection

The reference ellipsoid

- Approximates the geoid
- Flattened rotational ellipsoid
- Used as a basis for elevation

Map projections

- There is dozens of them
- Complex transformations of spherical coordinates
- They all distort the globe in some sense:
 - conserve area and distort angles (equal-area projection)
 - distort area and conserve angles (conformal projection)
 - distort both area and angles

The True size of..: https://www.thetruesize.com

e.g. Equirectangular Projection

- Longitude (x) Latitude (y)
- Centered around (0, 0)
- Plate Carée
- Most frequently used for visualization of global-scale data
- Distorts everything

e.g. Mercator projection

- Conformal
- (nautical use)
- Highly distorts areas
- Cannot represent poles
- Variant: Google Earth

e.g. Lambert's Cylindrical EA Projection

- Equal-area
- Highly distorts angles latitudinally

e.g. Mollweide Projection

- Equal-area
- Highly distorts angles longitudinally

e.g. Robinson Projection

- Distorts both angles and areas
- Relatively representative
- Promoted by NatGeo and now used by IPCC

Representation

- Older: PROJ.4 string: "+proj=moll"
- Well known text WKT2 string

```
PROJCS["World_Mollweide",
 GEOGCS["WGS 84",
     DATUM["WGS_1984",
         SPHEROID["WGS 84",6378137,298.257223563]],
     PRIMEM["Greenwich", 0],
     UNIT["Degree", 0.0174532925199433]],
PROJECTION["Mollweide"],
PARAMETER["central_meridian", 0],
PARAMETER["false_easting", 0],
PARAMETER["false_northing", 0],
 UNIT["metre", 1],
 AXIS["Easting", EAST],
 AXIS["Northing", NORTH],
 AUTHORITY["ESRI", "54009"]]
```

• EPSG registry ID (epsg.io): ESRI:54009

Managed by IOGP's Geomatics Committee

Implementation

Where, what, why?

GIS tools: Why R?

- Automatized manipulation and extraction of data
- Larger quantity of work then with a GUI
- Python is much more powerful
- Integration with other analyses
- Statistical analyses

The Spatial ecosystem

- Multiple R extension packages form the backbone
- The heart: Open Source Geospatial Foundation
- Recipe:
 - Open source libraries for calculations + R interface

- R packages hook on the APIs of these libraries
- + extra calculations in compiled code (C, C++, Fortran)

GDAL: Geodetic Data Abstraction Library

- Definitions of data formats
- Translation between data formats
- https://gdal.org/

PROJ

- Coordinate transformation
- Definition of Coordinate Reference Systems (CRS) and translation
- Current version is 9.2.1 (June 2023)
- R packages rely on older versions (PROJ4 or PROJ6)

GEOS: Geometry Open Source

- Computational geometry especially towards the manipulation of spatial data
- http://libgeos.org/

S2 Geometry

- Spherical computations (Google)
- http://s2geometry.io/

The R packages (two generations)

- Only some are essential, they are on the CRAN
- They are using the libraries
- Class definitions and basic methods
- Lots of packages build on these...

Lot of dependencies, slow development

Generation shift

What is a class?

https://www.youtube.com/watch?v=XqrkcO42DI8

Packages

old

vector sp, sf, terra rgdal, rgeos

raster raster terra, stars

+ others: e.g. geosphere

Installing all of them

Focus on the new but...

- On Windows this is trivial, you can get all from the CRAN with install.packages()
- On Mac (and Linux), it is recommended to install them one at a time. They will a) either tell you what libraries need to be installed so they can function properly, 2) only indicate errors and then we have to google:)
- The most important ones:

