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Diversity dynamics (again)

Where, what, why?



Dynamics?

The study of forcing

* What is it?

* How does diversity change over
time?




What is the story?

A How did we get to today?




Where is the question coming from?

Malthus — population dynamics:
logistic models
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Metazoan orders (Raup and Sepkoski, 1978)

Equilibrium?

marine
Metazoan Orders
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More complex patterns
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Evolutionary Faunas

Logistic diversification

* Sepkoski 1978, 1982,
1984

* Groups based on factor
analysis of diversity

* Simple numeric modelling
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Overall dynamics

Logistic or exponential?

* Biotic vs. abiotic controls
of diveristy?

* Marine Paleofaunal
database (Alroy and
Marshall 1998)
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Dynamics in detall: turnover

Equilibrium dynamics in island biogeography

Rate of immigration or extinction —*

Rate of immigration or extinction—
Rate of immigration or extinction —w
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{a)} Immigraticn and extinction rates {b} Effectof island size {c} Effect of distance from mainland



Dynamics in detall: turnover

Dynamics over time?
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Metrics of diversity and turnover

Where, what, why?



From original data...
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... o metrics
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Range-based methods

The per capita rates: categories (Foote, 2000)

conf ned to interval

F

only bottom boundary crossed

bL

only top boundary crossed

both boundaries crossed

Time interval of interest

bt



Range-based methods

The per capita rates: idea (extinction)
* We do not know the precise date
of extinction

* \We assume a constant chance for
species to go extinct in the bin

* The extinction rate becomes
- 10g(Nbr [ Npt + Np) [ At

e

number of taxa (N)

expected number
of taxa at timet

Time interval of interest

time(t)



Time bins

Distribution of turnover

i-1 i i+1 i+2

[ i+1 i+2

Continuous turnover
- 10g(Nbr [ Nt + Np) [ At

Pulsed turnover
- 10g(Npr / Npt + Npy)
Based on (Foote 2005)



Time bins

Distribution of turnover

» Stages vary quite much (95-bin
time scale)

* The 10/11My time scale of the
PBDB (49-bin time scale)

» Coarser, weaker filter on
stratigraphy
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Range-based methods

The record is gappy!
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Overall gappiness (Paul 1982):
sampling events vs. opportunities



number of taxa
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Range-based methods

Issues: The Signor-Lipps effect (1982)
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Range-based methods
Issues: Edge effects (Foote 2000)

* Extinction increases towards the
end

 Origination increases towards the
beginning

* + The Pull of the Recent
(abnormally good preservation at
the end increases diversity and
dampens extinction in recent
organisms included)
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Ficure 7. Edge effects on taxonomic rate metrics. In all
cases p = g, r = q, and interval length is equal to 0.5/4.
Solid line, extinction metric; dotted line, origination
metric. All rate metrics except estimated per-capita rate
are affected at both edges.



Incidence-based methods

John Alroy’s idea: use a moving window

-1 i i+1 't single interval pattern

’t;:lower two-timer pattern
’t.+1: upper two-timer pattern

3%t;: three-timer pattern

S I Pti: part-timer pattern




Incidence-based methods

John Alroy’s idea: use a moving window

-1 i I+1
1 log(°ti/?ti): extinction rate
2 log(%ti+i/3t): origination rate
EiL;'+;F
%
o 3t/(°ti + Pt): three-timer sampling
R [~ completeness

Corrected SIB: SIB / 3t/(3t; + Pt;)



Incidence-based methods

John Alroy’s idea: use a moving window

* 3 Major updates
* Corrected three-timer rates (Alroy 2008)
* Gap-filler rates (Alroy 2014)
» 2nd-for 3" substitution rates Alroy (2015)
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Subsampling

The metrics account for issues due to random sampling

* Sampling change from one bin to bin

* How do the patterns look like, when the w
. . . . 0
sampling intensity is equal? 0 500 1000 1500 2000 2500

- Use it as a sensitivity analysis tool! Does it Number of Genus Occurrences
affect your hypothesis?
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Subsampling: example
Calculating diversity

* The methods depend on the entire dataset!
* One replicate is based on combination of data from multiple bins

(a) Diversity curves based on raw data (b) Diversity curve from data of one subsampling trial (c) 8 Multiple subsampling trial results
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Adam’s impressions

John Alroy’s idea: use a moving window to get rid smearing

* The methods converge with perfect sampling!

* Use per-capita rates for initial analysis, they conserve
the most information

* The Three-time approach is designed to be less
affected by smearing effects, use the most up-to-date
(e.g. for extinction assessment)



This is not all... why?

There are multiple approaches to getting to these dimensions

* Comparability with previous results
 Computationally very efficient (simple)
* Might not be the best...

* Capture-Mark-Recapture: estimates sampling the
same time as the rest

* Phylogenetic Approaches: more explicit
assumptions on the process creating lineages



About divDyn

A very short story and basics



Why

In Erlangen and Sydney? (2014) —=< |l

* Workflow from Wolfgang Kiessling ]

* Based on discrete temporal bins '
* Motivation: reproducibility! |V =\/=l1—

* Based on interactions in Erlangen 7 ) g/ |
and Sydney (2014) iversity dynamics

* Published in 2019 — Kocsis et al.

) GitHub https://divdyn.github.io/r-package/



What?

Basic turnover and diversity metrics

 Traditional/counting approaches
* Subsampling wrappers

Variable name

tSing, tOri, tExt, tThrough
t2d, t2u, t3, tPart, tGFu, tGFd
extProp, oriProp

extPC, oriPC

ext3t, ori3t

extC3t, oriC3t

extGF, oriGF

ext2f3, oriZf3

div3IB

divRT

divBC

divCSIB
samp3t

sampRange

Metric name

Range-based taxon patterns
Occurrence-based taxon patterns
Proportional extinctions and originations

Per capita extinction and origination
rates

Three-timer extinction and origination
rates

Corrected three-timer extinction and
origination rates

Gap-filler extinction and origination
rates

Second-for-third substitution extinction
and origination rates

Sampled-in-bin diversity (SIB)

Range-through diversity (RT)

Boundary-crosser diversity (BC)

Corrected sampled-in-bin diversity
Three-timer sampling completeness

Range-based sampling completeness

Type
Counts
Counts
Turnover

Turnover

Turnover

Turnover

Turnover

Turnover

Richness

Richness

Richness

Richness
Sampling completeness

Sampling completeness

Reference

Foote (1999)
Alroy (2008, 2014)
Newell (1952)

Foote (1999); Alroy
(1996)

Alroy (2008)

Alroy (2008)

Alroy (2014)

Alroy (2015)

Miller and Foote
(1996)

Newell (1952)

Carr and Kitchell
(1980)

Alroy et al. (2008)
Alroy (2008)

Foote and Miller
(2007)



sampling intensity

What it does

Subsampling

raw diversity dynamics:
R ="f{D,2D,*D, D, *D,°D)

'D ‘0 D ‘D D D time (t)

R..=1('D, 2D, ®D, “D, 5D, ¢D)

f:= applied function
(e.g. divDyn ())

sampling intensity

single ‘trial dataset’

/1 "D,,=4("D)

g g p standard level of
( sampling

‘D D ‘D ‘D 0 D time ()

Ren =H9('D), 9(°D), ... 9(°D))

g:= subsampler function

RT diversity

per capita extinction rates of Foote (2000)
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(a) 10 my bins (b) Stages

Examples
Phanerozoic diversity and turnover o
* Desperate attempt at

reproducibility
* Taxonomic environmental o

scope similar to Sepkoski’'s g @
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Examples

The Corals example

Zooxanthellate (Z)

Azooxanthellate (AZ + AP)

Paleobiology, page 1 of 13
DOI: 10.1017/pab.2015.6

Biodiversity dynamics and environmental occupancy of fossil
azooxanthellate and zooxanthellate scleractinian corals

Wolfgang Kiessling and Addam T. Kocsis

Abstract.—Scleractinian corals have two fundamentally different life strategies, which can be inferred
from morphological criteria in fossil material. In the non-photosymbiotic group nutrition comes
exclusively from heterotrophic feeding, whereas the photosymbiotic group achieves a good part of its
nutrition from algae hosted in the coral’s tissue. These ecologic differences arose early in the evolutionary
history of corals but with repeated evolutionary losses and presumably also gains of symbiosis since
then. We assessed the biodiversity dynamics and environmental occupancy of both ecologic groups to
identify times when the evolutionary losses of symbiosis as inferred from molecular analyses might have
occurred and if these can be linked to environmental change. Two episodes are likely: The first was in the
mid-Cretaceous when non-symbiotic corals experienced an origination pulse and started to become
more common in deeper, non-reef habitats and on siliciclastic substrates initiating a long-term offshore
trend in occupancy. The second was around the Cretaceous/Paleogene boundary with another origi-
nation pulse and increased occupancy of deep-water settings in the non-symbiotic group. Environmental
factors such as rapid global warming associated with mid-Cretaceous anoxic events and increased
nutrient concentrations in Late Cretaceous—Cenozoic deeper waters are plausible mechanisms for the
shift. Turnover rates and durations are not significantly different between the two ecologic groups when
compared over the entire history of scleractinians. However, the deep-water shift of non-symbiotic corals
was accompanied by reduced extinction rates, supporting the view that environmental occupancy is a
prominent driver of evolutionary rates.

Wolfgang Kiessling. GeoZentrum Nordbayern, Department of Geography and Geosciences, Universitit
Erlangen-Niirnberg, Loewenichstrafie 28, D-91054 Erlangen, Germany. E-mail: wolfgang kiessling@fau.de

Addm T. Kocsis. MTA-MTM-ELTE Research Group for Paleontology and Department of Physical and Applied
Geology, Edtvds University, Piazmdny Péter sétiny 1/C, H-1117 Budapest, Hungary

Accepted: 26 November 2014
Supplemental materials deposited at Dryad: doi:10.5061/dryad.mv32t




Future... divDyn 2.0

* Going fully spatial (loc =)

* Customizable subsampling
(including spatial)

 Move more code to C++ -
separate library
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