
Intro: Files, BASH and Git
Ádám T. Kocsis

Friedrich-Alexander-Universität Erlangen-Nürnberg

2024-08-05

Ádám T. Kocsis

Why?
and GitHub

Paleontological data in the 21st century

We have gone a long way…

Collectors only
-1960s

Pioneers
1960-1990/2000

Community of
database-based research

Being FAIR
A standard way to publish data and dat-
based research.

• Findable
• Accessible
• Interoperable
• Reproducible

www.go-fair.org

Reproducibility

The foundation of the scientific experiment

• Can you reproduce the
exact results that you
acquired 5 years ago?

• If you cannot reproduce
what you have done, how
can other people?

Source: The Turing Way: https://the-turing-way.netlify.app/

Avoid this at all costs…

Do not keep things on your desktop!

Overall file management

Suggestions

• Keep all your stuff together (separate partition!)
• Logical hierarchy
• Make it portable (Windows!)
• Regularly spend time on organizing and cleaning files
• Naming and grouping: self-explanatory – make it for somebody else (you!)
• Try to avoid spaces in paths
• Cloud backups!

Reproducibility is your main goal!

Suggestions
Keep all your projects separate!

 Use the same project structure:

- Input Data (data)

- Computer code (code/scripts)

- Written documents (doc)

- Calculation output (export/output)

About files…

The Windows file system

• Files are data items on storage
devices

• Paths use the characteristic backslash
\ character to depict nestedness

• Directories are called “Folders”

• File format: filename.ext

• Total path to “Branding”:

C:\Windows\Branding

• Case insensitive!

The UNIX file system

• Shared for UNIX and UNIX-like systems
(GNU/Linux, macOS, Android)

• Concept: everything in the computer is
represented by a file

• Nestedness coded with forward slash : /

• File format can be anything

• Complete path to “bar”

/home/mthomas/class_stuff/bar

• Case sensitive!

Two main options:

Graphical User Interface (GUI)
• Super simple + mouse
• Visually appealing
• “Novice-friendly”

Command Line Interpreter (CLI)
• Steeper learning curve
• Automation
• Keyboard-only “Expert-friendly”

Terminal emulators
• Every OS has one
• Graphical applications that run a

program called the “shell”: an
interpreter program that translates
instructions

• Console applications can be run
with the shell

• Automation
• Program building
• Scientific calculations

• Shells are programmable

Mac (zsh or bash)

Windows (cmd and powershell)

The BASH shell
• Ubiquitous
• Most frequently used on servers

and clusters
• UNIX-native: most programming

systems use UNIX-like paths –
even on Windows!

• Mac: have it, z shell (zsh) is almost
the same

• Windows: a simplified version is
available with git (git bash)

https://git-scm.com

Installing git for Windows
and GitHub

BASH essentials
Most important functions and browsing directories

The prompt

OS: Ubuntu 20.04
Terminal Emulator: Terminator
Shell: BASH

OS: Windows 11
Terminal Emulator: MinTTY
Shell: Git-BASH

• User input expected (typing)
• Looks different on all, but there are

conventions:
user@host
~: is shorthand for user home
$: means normal user mode

The prompt
• User input expected (typing)
• Looks different on all, but there are

conventions:
user@host
~: is shorthand for user home
$: means normal user mode

user host ~ (tilde):
user home directory

pwd

Return path to current directory

mkdir <name> ⎵
Create a directory

• No output to the console: no error
occurred (directory was created)

space

ls

List directory contents

• Returns a list of entries (both
normal files and directories) – can
be colored

• Note the quotes around entries
with spaces in them!

ls -l⎵
List directory contents (with option l)

• Long output, includes attributes

d:directory

size (bytes)

owner

modification name

permissions

cd <path_to_directory>⎵
Go to a directory

• Can be relative or absolute!

cd ..⎵
Go to parent directory

• .. (dot dot) is a placeholder for the
parent of the current directory (one
up in the hierarchy)

Exercise (5 minutes)
• Create this directory structure using the combinations of the previous

commands!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Exercise (5 minutes)
• Create this directory structure using the combinations of the previous

commands!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Hints

 use <TAB> completion (try <TAB>
<TAB> to see multiple solutions)

 use <UP> and <DOWN> to search
command history for already given
commands

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

current directory

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

Solution 1 – changing directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

How to check?

find <path to directory>⎵
Recursive listing

• 1. Go back to the parent
• 2. Use find there!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever) relative paths

parent of parent

find⎵<path>⎵>⎵<path_to file>

Output redirection

• Whatever was output to the
console is now in a new file!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Parent (whatever)

“>” Will overwrite existing files!

Angled bracket or chevron

Suggested nomenclature

(): Parenthesis (open and close)
[]: Bracket (open and close)
{ }: Brace (open and close)
< >: Chevrons (left and right)

cat <path to file>⎵
Display contents of file

• Exactly as it was output to the
console

rm -r <path to dir>⎵ ⎵
Recursive deletion (-r)

• Deletes the content of the directory
and the directory itself

• rmdir doesn’t work!
• No output = success?!

WARNING!
The results of rm
cannot be undone!

echo <text>⎵
Print something

• Used to print things to the console
(standard output)

• $? Is a special symbol: the exit
code of the last command:

• 0: Success
• Other: Failure

https://www.redhat.com/sysadmin/exit-codes-demystified

Recreate the structure!
• Did you type things into the console?!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Hint 1. Use a general-
purpose text editor!

Novice-friendly:
- Sublime Text
- VS Code
- Atom

Expert-friendly:
- Vim
- Emacs

Solution 2
• Using the same reference directory

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves

Hint 2. we can use the
contents of fossil_path.txt
Add mkdir in front of every line,
then copy and paste into the
console!

bash <path>⎵
Executing shell scripts

• The text we created is actually a
shell script

• The “bash” console application
program can be used to execute it.

https://www.redhat.com/sysadmin/exit-codes-demystified

directory not
present

adding ‘mkdir’ to
previous file

execute file as bash
script

Show results

bash --version⎵
Running console applications

• --version: ask for program
version

• --help: display help for program

cp <what> <where>⎵ ⎵
Copying a file or directory

• Target directory or file
• If directory, the file will be put into it

fossils

molluscs brachiopods vertebrates

Parent (whatever)

fossil_path.txt

fossil_path.txt One of the tools that we looked at
can be used to delete the file that
we have created. Try to delete it!

List contents of
path!

New file

rm <path_file>⎵
Without –r removes a single file

• As with cp, multiple files can be
passed to this
(separated by spaces)

fossils

molluscs brachiopods vertebrates

Parent (whatever)

fossil_path.txt

fossil_path.txt

File disappeared

Demo!
1. Use an echo statement to write the genus name “Lingula” into

fossils/brachiopods/genera.txt!
2. Then change directory to brachiopods.

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves genera.txt

• You can use the double chevron
>> to append to an existing file

echo “Lingula” > fossils/brachiopods/genera.txt⎵ ⎵ ⎵

Appending to files

• You can use the double chevron
>> to append to an existing file

• Added to new line!

echo “Spiriferina” >> genera.txt⎵ ⎵ ⎵

We use so called “escape characters” to
denote special symbols, that sometimes
have other meanings.

\n: newline escape
\t : tab escape
\” : double quote escape
\’ : single quote escape

Special characters

Edit/Replace

\n Turn on regex

Escape characters
highlighted!

Demo!
1. Use an echo statement to write the genus name “Terebratula” and “Athyris”

into fossils/brachiopods/genera.txt, use a newline escape
between them!

2. Then change directory to brachiopods.
fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves genera.txt

Appending to files

• It doesn’t seem to work!
• Echo needs to know to replace the

combination \n with the newline
character!

echo ”Terebratula\nAthyrida” >> genera.txt⎵ ⎵ ⎵

This is not ok!

Appending to files

• Use the –e option!
• Our file is messed up. Options:

• 1. Redo our file
• 2. Use an editor to correct

• Delete the bad line!
• Better, next time: go back in time.

echo -e “Terebratula\nAthyrida” >> genera.txt⎵ ⎵ ⎵ ⎵

Now this is correct!
But this is still not

Basic version control with Git
and GitHub

Projects evolve in a non-linear way,
especially programming projects.

• Multiple people work on them, sometimes at
the same time

• Recording the history of project development
• Working with many files
• Sharing code is necessary, we also need to

know who changes what

Why version control?

Difference between Git and GitHub?

git

• Locally running application
• Operates with files in a local

directory (repository)
• Works without a remotes!

GitHub and GitLab

• Remote servers with copies of the
repository

Git is a command line
(console application)

• The complete features are
only available via the
command line!

• Simplified graphical interfaces
written for novices, embedded
in IDEs

• These actually just translate
the actions to the command
line application -> Experiment!

Interfaces to git

Record snapshots of how a project develops.

The basic use of git

• Code develops in a non-linear, but
continuous way, with lots of small
changes:

• Contents of files change
• New files are added to the repository
• Old files are delete from the

respository

Record snapshots of how a project develops.

The basic use of git

• Specific states of the code
represent milestones:

• Something works completely
• Everything is cleaned up
• Ready for further development

• In between these are transient
states, when you are working on
something but that is not yet done.

Record snapshots of how a project develops.

The basic use of git

• These milesones can be saved
and accessed at any time.

• These states are called as
‘commits’ in git’s terminology

Record snapshots of how a project develops.

The basic use of git

• Only the committed stages are
recorded, the rest of the history is
discarded

• The git repository is recorded as
changes from one commit to the
next

Create a new git repository in current
directory.

• A git repository is a directory with
git metadata in it.

• The git metadata are in the .git
directory

git init⎵

Creates the .git metadata

.name always refers
to hidden items!

Name of application Command for the application

List all files and directories in directory,
including hidden items!

• The double dot (..) represents a
way to refer to the previous
directory, as we have seen earlier

• The single dot (.) represents a way
to refer to the current directory.

• Note: cd brachiopods and
cd ./brachiopods are the
same!

ls -a⎵

the .git metadata directory

‘Virtual’ directories . (dot) and .. (dot dot)

Show the status of the current
respository

• A series of commits is called a
‘branch’. Simple repos use only
one. There is always a current one

• Git has detected that there are
things in the repo that are not
registered.

• Git can only detect files. Empty
directories are not recorded!

git status⎵

We have no commits yet

NOTE: In many cases, git literally tells you what to do.

Name of application Command for the application

Name of the current “branch”

The preparation of a commit

Staging

• Commits are permanent, or are difficult to remove once
done, so we have tools to make sure that they are ok

• Changes first have to be staged, before commiting. This
allows us to include only specific changes in the commit,
and to make sure that we are doing things ok.

Initial boarding pass control vs. boarding

Staging and commit (Airport)

• If you go through security you are
staged to fly. You are expected to
be on the plane, but you can still
leave.

• If you board the plane and the
cabin doors are closed, you are
committed to a flight.

In the staged area,
waiting to be

commited

Getting
staged

The commit

Stage the target file or directory.

• Frequently this is an entire
directory, including . (dot)

• If successful does not return
anything, has to be checked with
git status

git add <path>⎵ ⎵
Name of application Command for the application

Show status of repo

• There is just one file here which git
finds.

• The file is now stages to be
commited.

git status⎵ (again)

If you have changed your
mind, do what git tells you!

Things really went error free
(not necessary to check)

First use not permitted without credentials!

• You need to provide a user name
and an email address with the git
config command

git commit -m <message>⎵ ⎵ ⎵

Configuring git

• user.name and user.email
• --global sets this for all your local

git repositories
• Now you are ready to commit

git config --global <what> <value>⎵ ⎵ ⎵ ⎵

Now create a new commit

• Provide a message in quotes!
This is the human readable
description of what changed.

• Every commit gets a unique ‘hash’,
a random set of characters that
are used to identify unambiguously
identify the commit

git commit -m <message>⎵ ⎵ ⎵ The beginning of the
hash of the commit.

branch

The message you provided

Four new lines are added

The affected files

Nothing to be done.

• Create two new files

git status⎵ (yet again)

Demo!
1. Create a new file genera.txt in the mammals directory, and put the names

of 3 mammalian genera in it!
2. Stage and commit the changes!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves genera.txt

genera.txt

My solution

Contents of the
new file

Add everything you find in current
directory.

Demo!
1. Create a new file genera.txt in the birds directory, and put the names of

2 bird genera in it!
2. Add another genus to the mammals.
3. Try to commit only the birds!

fossils

molluscs brachiopods vertebrates

reptiles birds mammalsgastropods bivalves genera.txt

genera.txt

1. Make the changes.

My solution Add birds

Change in already
committed file

Added another
mamal

New entries to be
added

2. Stage only the birds.

My solution

Staged.

Not staged!

3. Stage only the birds.

My solution

Nothing happened
to mammals!

Discarding changes from previous
commit

• We can commit the new mammal
or discard it.

• You can correct unintended
changes with this.

• What about even older changes?

git restore <path>⎵ ⎵
Again, git literally tells
you your options

The file is restored to
the state before the
changes, what is in the
commit.

GitHub
and GitHub

Where the world builds software (2008-)

• Open source software development platform, places to
store and share git repositories

• Currently owned by Microsoft
• Applications, packages, plugins, webpages and many

more!
• Free and private repositories.

GitHub

Sign up if you haven’t yet!

GitHub

GitHub - Dashboard SettingsNotifications
Notifications

GitHub - Dashboard SettingsAccess you repos

GitHub – Creating a new repo Make a new repo

GitHub – Creating a new repo

Usually the same as the local
directory.

Create!

Things for others!

Do not change these. You will copy
files over from your local repo.

GitHub – The fresh empty repo

This is what you want

We have already done this mostly

Mac Users

 Can only use ssh to
authenticate!

GitHub – Add new remote
Application name

The name of the new remote. You
can refer to it from now on using

this name!
Command: you want to make

changes of how your local repository
is connected to remotes

You are registering a new remote

The URL of the remote. This is
used to identify the remote on the

web.

GitHub – Rename current branch to main
Application name

The name of the branch (new)
Command: you want to do

things with branches

Move all contents of current branch
to

For political reasons, GitHub does not allow the use of the name master, hence this
extra step.

GitHub – Pushing contents of branch to remote
Application name Remote to copy material toCommand: you want copy

contents from local to
remote

Set the default remote and branch

GitHub will ask for your credentials

Which branch to push?

GitHub – Executing this and signing in on windows

Most interactive sign
in option available on

Windows

Note branch name change

GitHub – Executing this and signing in on windows

This is what you want

GitHub – Successful push

Transfer stats

New branch main is created
on remote

And is now in sync with local

GitHub – Successful push

A Readme is quite useful

Writing a Readme

• Default format is
markdown (later)

• You can work on files
using GitHub’s interface

• Save the defaults, by
clicking on the green
button

• Note that you are
technically creating a new
commit!

File name: .md is for
markdown.

Some default content, we will
visit this again.

Default commit message.

GitHub – Changing the remote

Readme file
now added! Beautifully rendered

markdown document

The message of the
last commit that
modified the file

The very last
commit’s hash

git pull <remote> <branch>⎵ ⎵ ⎵

• Just because you changed
something on the remote
server does not make
things magically appear
locally

• You have to pull the
contents of the remote to
have the new file that you
just created!

Pull changes from remote

	Intro: Files, BASH and Git
	Why?
	Paleontological data in the 21st century
	Being FAIR
	Reproducibility
	Avoid this at all costs…
	Overall file management
	Reproducibility is your main goal!
	Suggestions
	About files…
	The Windows file system
	The UNIX file system
	Two main options:
	Terminal emulators
	The BASH shell
	Installing git for Windows
	BASH essentials
	The prompt
	The prompt (2)
	pwd
	mkdir⎵<name>
	ls
	ls⎵-l
	cd⎵<path_to_directory>
	cd⎵..
	Exercise (5 minutes)
	Exercise (5 minutes) (2)
	Solution 1 – changing directory
	Solution 1 – changing directory (2)
	Solution 1 – changing directory (3)
	Solution 1 – changing directory (4)
	Solution 1 – changing directory (5)
	Solution 1 – changing directory (6)
	Solution 1 – changing directory (7)
	Solution 1 – changing directory (8)
	Solution 1 – changing directory (9)
	Solution 1 – changing directory (10)
	find⎵<path to directory>
	find⎵<path>⎵>⎵<path_to file>
	Suggested nomenclature
	cat⎵<path to file>
	rm⎵-r⎵<path to dir>
	echo⎵<text>
	Recreate the structure!
	Solution 2
	bash⎵<path>
	bash⎵--version
	cp⎵<what>⎵<where>
	rm⎵<path_file>
	Demo!
	echo⎵“Lingula”⎵>⎵fossils/brachiopods/genera.txt
	echo⎵“Spiriferina”⎵>>⎵genera.txt
	Special characters
	Demo! (2)
	echo⎵”TerebratulanAthyrida”⎵>>⎵genera.txt
	echo⎵-e⎵“TerebratulanAthyrida”⎵>>⎵genera.txt
	Basic version control with Git
	Why version control?
	Difference between Git and GitHub?
	Interfaces to git
	The basic use of git
	The basic use of git (2)
	The basic use of git (3)
	The basic use of git (4)
	git⎵init
	ls⎵-a
	git⎵status
	Staging
	Staging and commit (Airport)
	git⎵add⎵<path>
	git⎵status (again)
	git⎵commit⎵-m⎵<message>
	git⎵config⎵--global⎵<what>⎵<value>
	git⎵commit⎵-m⎵<message> (2)
	git⎵status (yet again)
	Demo! (3)
	Slide 77
	Demo! (4)
	Slide 79
	Slide 80
	Slide 81
	git⎵restore⎵<path>
	GitHub
	GitHub (2)
	GitHub (3)
	GitHub - Dashboard
	GitHub - Dashboard (2)
	GitHub – Creating a new repo
	GitHub – Creating a new repo (2)
	GitHub – The fresh empty repo
	GitHub – Add new remote
	GitHub – Rename current branch to main
	GitHub – Pushing contents of branch to remote
	GitHub – Executing this and signing in on windows
	GitHub – Executing this and signing in on windows (2)
	GitHub – Successful push
	GitHub – Successful push (2)
	Writing a Readme
	GitHub – Changing the remote
	git⎵pull⎵<remote>⎵<branch>

