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Today’s objectives

• Recap  

• Bayesian inference  

• MCMC 

• Intro to molecular datinA
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Recap
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Bayes’ theorem
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Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )



Bayes’ theorem
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Likelihood

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

The probability of the 
data given the model 
assumptions and 
parameter values



Bayes’ theorem
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Priors

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

This represents our 
prior knowledge of 
the model 
parameters



Bayes’ theorem
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Marginal probability

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )
The probability of the 
data, given all possible 
parameter values. Can 
be thought of as a 
normalising constant



Bayes’ theorem
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posterior

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

Reflects our combined 
knowledge based on the 
likelihood and the priors



Bayesian tree inference
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How do we find the ‘best’ tree?
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It depends how you measure ‘best’
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Method Criterion (tree score)

Maximum parsimony Minimum number of chanAes

Maximum likelihood
Likelihood score (probability), optimised over branch lenAths 
and model parameters

Bayesian inference
Posterior probability, inteAratinA over branch lenAths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-buildinA but they are the most widely used



Graphical models

Provide tools for visually and 
computationally representinA 
complex, parameter-rich models 

Depict the conditional dependence 
structure of parameters and other 
random variables
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c)

d)

e)
i 2 N

# constant node
r <- 10

# stochastic node
l ⇠ dnExp(r)

# stochastic node (observed)
l.clamp(0.1)

# deterministic node
l := exp(r)

# stochastic nodes (iid)
for (i in 1:N) {

l[i] ⇠ dnExp(r)

}
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )



Tracer is an 
amazing program 
for exploring 
MCMC output

Summarising the posterior
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Tracer is an 
amazing program 
for exploring 
MCMC output

Summarising the posterior
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Introduction to molecular dating
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What can we learn 
from trees?
• Evolutionary relationships 

• TiminA of diversification events 

• GeoloAical context 

• Rates of phenotypic evolution 

• Diversification rates
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https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.1733


Molecular (or morphological) characters are 
not independently informative about time
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branch lengths = genetic distance
v = rt

root

ATGCATGC

ATGCATGG

ATGCATCG

TTGCCTGC

TTGCCTGG

TTGCATCG

TAGCGTGC

TAGCGAGC

Slow rate, long 
interval or fast rate, 
short interval? 

Goal: to disentangle 
evolutionary rate and 
time



Molecular (or morphological) characters are 
not independently informative about time
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Goal: to disentangle 
evolutionary rate and 
time

branch lengths = time

ATGCATGC

ATGCATGG

ATGCATCG

TTGCCTGC

TTGCCTGG

TTGCATCG

TAGCGTGC

TAGCGAGC



The molecular clock hypothesis
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Molecules as documents of evolutionary history Zuckerkandl & Pauling (1965) 
A history of the molecular clock Morgan (1998)

https://pubmed.ncbi.nlm.nih.gov/5876245/
https://www.jstor.org/stable/4331476


Calibrating the substitution rate
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branch lengths = time

ATGCATGC

ATGCATGG

ATGCATCG

TTGCCTGC

TTGCCTGG

TTGCATCG

TAGCGTGC

TAGCGAGC

6.5

Temporal evidence of 
divergence for one 
species pair let’s us 
calibrate the average 
rate of molecular 
evolution 



Calibrating the substitution rate
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ATGCATGC

ATGCATGG

ATGCATCG

TTGCCTGC

TTGCCTGG

TTGCATCG

TAGCGTGC

TAGCGAGC

15
35

50

branch lengths = time
6.5

We can use this rate to 
extrapolate the 
divergence times for 
other species pairs 



Rate and time are not fully identifiable!
Molecular dating: challenges
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branch lengths = genetic distance
v = rt

root

ATGCATGC

ATGCATGG

ATGCATCG

TTGCCTGC

TTGCCTGG

TTGCATCG

TAGCGTGC

TAGCGAGC



Many variables contribute to variation in the substitution rate
Molecular dating: challenges

25
Bromham et al. (2015)

https://lindellb.files.wordpress.com/2015/03/bromham-plantrates-amnat15.pdf


Molecular dating: challenges
Many variables contribute to variation in the substitution rate
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The molecular clock is not constant 

Rates vary across: 

• taxa 
• time 
• Aenes  
• sites within the same Aene

• The clock is in fact violated for most species/genes/characters

SOURCES OF VARIATION

Tuesday, January 13, 2015



Calibrations are imprecise
Molecular dating: challenges

27Time

Molecular evolution:

Morphological evolution:

Fossil preservation:



Calibrations are imprecise
Molecular dating: challenges

28Time

Molecular evolution:

Morphological evolution:

Fossil preservation:

genetic  
divergence



Calibrations are imprecise
Molecular dating: challenges
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Molecular evolution:

Morphological evolution:

Fossil preservation:

genetic  
divergence

apomorphy



Calibrations are imprecise
Molecular dating: challenges

30Time

Molecular evolution:

Morphological evolution:

Fossil preservation:

genetic  
divergence

apomorphy

earliest fossil



Calibrations are imprecise
Molecular dating: challenges

31Time

1.

2.

3.

1. Fossil minimum 
2. Acquisition of apomorphy 
3. Most probable divergence time



Summary

1. Rate and time are not fully identifiable  

2. The substitution rate varies 

3. Calibrations are imprecise

Molecular dating: challenges

32

→ we need a flexible statistical framework that deals well with uncertainty!



Bayesian divergence time estimation
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without considering time
Components used to infer trees

34

data 
sequences or 

characters

tree 
topology and 

branch lengths

substitution 
model
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Bayesian tree inference
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likelihood priors

marginal probability

posterior



We use a Bayesian framework
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P( model | data ) =
P( data | model ) P( model )

P( data )

likelihood priors

marginal 
probability of the 

data

posterior



Bayesian divergence time estimation
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λ μ
ψ
ρ

The data Tripartite model components

0

1

Substitution
model

Clock
model

Tree and tree
model

Phylogenetic
characters

Fossil
ages

0101...
1101...
0100...

ATTG...
TTGC...
ATTC...

AND/OR

The data

sample 
ages

phylogenetics 
characters

Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. 2020. Elements of Paleontology

https://ecoevorxiv.org/4vazh/


Bayesian divergence time estimation
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λ μ
ψ
ρ

The data Tripartite model components

0

1

Substitution
model

Clock
model

Tree and tree
model

Phylogenetic
characters

Fossil
ages

0101...
1101...
0100...

ATTG...
TTGC...
ATTC...

AND/OR

3 model componentsThe data

substitution 
model

clock 
model

tree and 
tree model

sample 
ages

phylogenetics 
characters

Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. 2020. Elements of Paleontology

https://ecoevorxiv.org/4vazh/
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tree modelclock modelsubstitution model

How likely are we to observe a change 
between character states? e.g., A → T
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tree modelclock modelsubstitution model

How have rates of evolution varied (or not) 
across the tree?
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tree modelclock modelsubstitution model

How have species originated, gone extinct and 
been sampled through time?

Note: the tree model is often referred to as the tree prior even though the fossil sampling times 
are also data. See May & Rothfels 2023 

https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syad010/7075727


Bayesian divergence time estimation
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Calculating the likelihood

43Slide adapted from Sebastian Duchene 

Prior Prior Likelihood
Based on the 
calibration times we 
can estimate the rate 
over time

Once we have the rate 
we can transform 
evolutionary rates in 
Aenetic distance



We can use a calibration density to 
constrain internal node ages 

We typically use a birth-death 
process model to describe the tree 
generating process 

Node dating

44

Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath 2012. Sys Bio



The clock model describes how 
evolutionary rates vary (or not) 
across the tree

45

clock model



The strict / constant molecular clock model 
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Assumptions 

• The substitution rate is constant 
over time 

• All lineaAes share the same rate

low high
branch length = substitution rate



Relaxed clock models
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Assumptions 

• LineaAe-specific rates  

• The rate assiAned to each 
branch is drawn from some 
underlyinA distribution

low high
branch length = substitution rate



Graphical models: strict clock model
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cδc

exponential

clock rate



Graphical models: relaxed clock model
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r iν
i N

δν

exponential exponential

branch rates

in



There are many different clock models

50

• Strict clock  

• Uncorrelated or independent clock (= the favourite)  

• Autocorrelated clock  

• Local clocks 

• Mixture models

The changing face of the molecular evolutionary clock. Ho. 2014 
See also: Warnock, Wright. 2020. Elements of Paleontology

https://www.cell.com/trends/ecology-evolution/abstract/S0169-5347(14)00155-4?_returnURL=https://linkinghub.elsevier.com/retrieve/pii/S0169534714001554?showall=true
https://ecoevorxiv.org/4vazh/


Times and rates are not fully identifiable!
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Prior Prior Likelihood

Slide adapted from Sebastian Duchene 



The priors will always influence the results
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Neutral theory
Also termed the neutral 
mutation-random drift theory; 
claims that evolution at the 
molecular level is mainly 
random fixation of mutations 
that have little fitness effect.

Neutral mutations
Mutations that do not affect 
the fitness (survival or 
reproduction) of the individual.

Advantageous mutations
Mutations that improve the 
fitness of the carrier and are 
favoured by natural selection.

Deleterious mutations
Mutations that reduce the 
fitness of the carrier and are 
removed from the population 
by negative selection.

Substitution
Mutations that spread into the 
population and become fixed, 
driven either by chance or by 
natural selection.

Relaxed clock models
Models of evolutionary rate 
drift over time or across 
lineages developed to relax the 
molecular clock hypothesis.

illustrates the Bayesian clock dating of equation (2) in a 
two-species case.

Direct calculation of the proportionality constant 
z in equation (2) is not feasible. In practice, a simula-
tion algorithm known as the Markov Chain Monte Carlo 
algorithm (MCMC algorithm) is used to generate a 
sample from the posterior distribution. The MCMC 
algorithm is computationally expensive, and a typi-
cal MCMC clock-dating analysis may take from a few 
minutes to several months for large genome-scale data 
sets. Methods that approximate the likelihood can 
substantially speed up the analysis29,57,58. For technical 
reviews on Bayesian and MCMC molecular clock dating 
see REFS 59,60.

Nearly a dozen computer software packages cur-
rently exist for Bayesian dating analysis (TABLE 1), all of 
which incorporate models of rate variation among lin-
eages (the episodic or relaxed clock models envisioned 
by Gillespie)61. All of these programs can also analyse 
multiple gene loci and accommodate multiple fossil 
 calibrations in one analysis.

Limits of Bayesian divergence time estimation
Estimating species divergence times on the basis of 
uncertain calibrations is challenging. The main diffi-
culty is that molecular sequence data provide informa-
tion about molecular distances (the product of times 
and rates) but not about times and rates separately. In 
other words, the time and rate parameters are unidenti-
fiable. Thus, in Bayesian clock dating, the sequence 
distances are resolved into absolute times and rates 
through the use of priors. In a conventional Bayesian 
estimation problem, the prior becomes unimportant and 

the Bayesian estimates converge to the true parameter 
values as more and more data are analysed. However, 
convergence on truth does not occur in divergence time 
estimation. The use of priors to resolve times and rates 
has two consequences. First, as more loci or increasingly 
longer sequences are included in the analysis but the 
calibration information does not change, the posterior 
time estimates do not converge to point values and will 
instead involve uncertainties31,54,62. Second, the priors on 
times and on rates have an important impact on the pos-
terior time estimates even if a huge amount of sequence 
data is used62,63. Errors in the time prior and in the rate 
prior can lead to very precise but grossly inaccurate time 
estimates62,64. Great care must always be taken in the con-
struction of fossil calibrations and in the specification 
of priors on times and on rates in a dating analysis65,66.

As the amount of sequence data approximates 
genome scale, the molecular distances or branch 
lengths on the phylogeny are essentially determined 
without any uncertainty, as are the relative ages of the 
nodes. However, the absolute ages and absolute rates 
cannot be known without additional information (in 
the form of priors). The joint posterior of times and 
rates is thus one-dimensional. This reasoning has been 
used to determine the limiting posterior distribution 
when the amount of sequence data (that is, the number 
of loci or the length of the sequences) increases without 
bound31,54. An infinite-sites plot can be used to deter-
mine whether the amount of sequence data is satur-
ated or whether including more sequence data is likely 
to improve the time estimates (FIG. 2). The theory has 
been extended to the analysis of large but finite data 
sets to partition the uncertainties in the posterior time 
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Nature Reviews | GeneticsFigure 1 | Bayesian molecular clock dating. We estimate the posterior 
distribution of divergence time (t) and rate (r) in a twospecies case to 
illustrate Bayesian molecular clock dating. The data are an alignment of the 
12S RNA gene sequences from humans and orangutans, with 90 
differences at 948 nucleotides sites. The joint prior (part a) is composed of 
two gamma densities (reflecting our prior information on the molecular rate 
and on the geological divergence time of human–orangutan), and the 

likelihood (part b) is calculated under the Jukes–Cantor model. The posterior 
surface (part c) is the result of multiplying the prior and the likelihood. The 
data are informative about the molecular distance, d = tr, but not about t and 
r separately. The posterior is thus very sensitive to the prior. The blue line 
indicates the maximum likelihood estimate of t and r, and the molecular 
distance d, with t̂r̂ = d̂. When the number of sites is infinite, the likelihood 
collapses onto the blue line, and the posterior becomes onedimensional62.

REV IEWS

74 | FEBRUARY 2016  | VOLUME 17  www.nature.com/nrg

© 2016 Macmillan Publishers Limited. All rights reserved

dos Reis et al. 2015. Nature Reviews Genetics

https://www.nature.com/articles/nrg.2015.8


Exercise

53

https://phylogenetics-fau.netlify.app/exercise-05


Next objectives

• Recap  

• Tripartite framework 

• The fossilised birth-death process 

• Total-evidence datinA 

• Phylodynamics

54



Bayesian divergence time estimation
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Recap



We use a Bayesian framework
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P( model | data ) =
P( data | model ) P( model )

P( data )

likelihood priors

marginal 
probability of the 

data

posterior
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Bayesian divergence time estimation
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3 model components

substitution 
model

clock 
model

tree and tree 
model

The data

sample 
ages

phylogenetics 
characters

and / or

Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. (2020)



Bayesian divergence time estimation
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We can use a calibration density to 
constrain internal node ages 

We typically use a birth-death 
process model to describe the tree 
generating process 

Recap: Node dating

59

Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath (2012). Sys Bio



There are many! 

A lot of information is excluded, since typically we assign one fossil 
per calibration node

Node dating: potential issues

60

sampled 
fossils

fossils used 
for node 

calibration 
— all others 

are not 
directly 

included in 
the inference40 40 00



Example: living penguins
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Late Cretaceous Paleocene Eocene Oligocene Miocene Pli.Ple.

Nearest living 
relative is the 
group 
containing 
falcons - 
separated by 
~60 Ma



Example: living penguins
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Paleocene Eocene Oligocene Miocene Pli. Ple.

Artistic reconstructions by: Stephanie Abramowicz for Scientific American
Fordyce, R.E. and D.T. Ksepka. The Strangest Bird Scientific American 307, 56 – 61 (2012)

But penguins 
have a rich 
fossil record!



The model doesn’t describe the process that Aenerated the fossil samplinA 
times, meaninA the model is statistically incoherent 

The calibration priors are difficult to specify objectively and can have a 
massive impact on the diverAence times. They can also interact with each 
other and / or the birth-death process prior in unintuitive ways

Node dating: potential issues

63

Some references on issues with specified vs effective priors 
Yang and Rannala. 2006. MBE  

Heled and Drummond. 2012. Sys Bio 
Warnock et al. 2012, 2015

http://abacus.gene.ucl.ac.uk/ziheng/pdf/2006YangRannalaMBEv23p212.pdf
https://pubmed.ncbi.nlm.nih.gov/21856631/
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2014.1013
https://royalsocietypublishing.org/doi/10.1098/rspb.2014.1013


Total-evidence dating
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Tip-dating or “total-evidence” dating
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40 40 00

1010…

1010…

ATGC… 

ATGC… 1010…

ATGC…

ATGC… 1010…
ATGC…

We have DNA for living 
species. We have  
morphology for living and 
fossil species 

Fossils can be positioned 
on the basis of 
morphology 
→ accounts for 
uncertainty in fossil 
placement



The uniform tree prior
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8361

70
60

350 300 250 200 150 100 50 0     Million years before present

Percentage of morphological
characters scored 
for each terminal

Ronquist et al. 2012 Sys Bio
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What does a generating prior for the 
fossil record look like?
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The fossilised birth-death process
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Some lineages only sampled once

Some lineages go completely unsampled

Sampled ancestors



The complete tree
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The reconstructed tree
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The fossilised birth-death (FBD) 
process allows us to calculate 
the probability of observing the 
reconstructed tree
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Sampling-through-time in birth-death trees. Stadler. (2010) 
First implemented: Heath et al. (2014) and Gavryushkina et al. (2014)
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The proportion increases with higher turnover (birth - death) or higher sampling

Sampled ancestors

76Walker, Heath. 2020. Phylogenetics in the Genomic Era. 

https://hal.archives-ouvertes.fr/hal-02536361/


Ignoring sampled ancestors can lead to inaccurate parameter estimates

Sampled ancestors

77Gavryushkina et al. 2014 PLoS Comp Bio

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003919


Time calibrated tree of living and fossil bears
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First application of the 
FBD model.  

Fossils are incorporated 
via constraints, not 
character data. Their 
precise placement can 
not be inferred, but this 
uncertainty will be 
reflected in the posterior

Heath et al. 2014. PNAS
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https://phylogenetics-fau.netlify.app/exercise-07a


Fossils can be incorporated via taxonomy or character data (total-evidence)
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.
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FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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impact on tree inference across a wide range of realistic
scenarios, which is congruent with the results of empirical
studies [10]. Analyses that incorporate palaeontological data
are more accurate than those based exclusively on extant
taxa, regardless of inference method (figure 1). In part, this
improvement is driven by fossils’ power to elucidate relation-
ships within living clades, especially among lineages
separated by mid- to shallow divergences (figure 3). Hence,
we might expect the increased congruence between morpho-
logical and molecular trees found for some clades [6–9,51])
to reflect a general trend of consilience through improved
accuracy as fossils are incorporated in phylogenetic

reconstruction. Trees that combine living and extinct taxa
also show a higher proportion of resolved nodes, while at
the same time leaving more deep nodes unresolved (figures 1
and 3). The phylogenetic analysis of morphological data has
been previously shown to result in overprecise topologies
[21,24], a phenomenon we find to be most prevalent among
deep divergences. This result implies that characters evolving
at rates comparable to those of empirical morphological
traits fail to retain phylogenetic signal for ancient and rapid
divergences (electronic supplementary material, figures S3
and S10). With increasing fossil sampling, this overprecision
is remedied as deep nodes collapse (especially under
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Figure 1. Impact of fossil sampling, missing data and method of inference on topological accuracy and precision. Precision (right) represents the proportion of
resolved bipartitions/quartets, accuracy (left) the fraction of these that are correct. Values correspond to means ± 1 s.d. (Online version in colour.)
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accuracy precision



Some notes
• The topoloAy of extant taxa is larAely unaffected by how fossils 

are incorporated 

• Fossils and aAe information help inform topoloAy 

• DiverAence times are much more sensitive to errors in fossil 
placement and model misspecification 

• Total-evidence datinA is more robust to model misspecification

84

Barido-Sottani et al. (2023) Putting the F in FBD analyses: tree constraints or morphological data? Palaeontology



Graphical model representation of the FBDP
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Bringing everything together
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These models are special cases of the FBD process, with fossil sampling (ψ) = zero. 

Relationship to (some) other birth-death process models

87

Elements of Paleontology 19

Figure 5 The complete versus reconstructed trees under birth-death process
models. The assumptions of four different models are captured in each row. The
first column shows an example outcome of the joint diversification and sampling
processes (i.e., the complete tree), where diamonds represent extant or fossil sam-
ples. The second column shows the tree that contains sampled lineages only (i.e.,
the reconstructed tree). The third column shows the parameters and the name com-
monly applied to the model used to described the probability of observing the
reconstructed tree shown in column 2, given we assume the generating processes
shown in column 1. In all cases we assume constant speciation, extinction and
fossil recovery, and uniform extant species sampling. Trees and fossils were sim-
ulated and plotted using the R packages h`22aBK (Stadler, 2011) and 6QbbBHaBK
(Barido-Sottani et al., 2019). Code to reproduce this figure is available online (DOI:
10.5281/zenodo.4035016).
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complete vs. reconstructed trees

λ = 0.1 
μ = 0.05 

ρ = 0.6 

ψ = 0.05

λ = 0.1 
μ = 0.05 

ρ = 0.6

λ = 0.1 
μ = 0.05 

λ = 0.1 

Stadler 
2010

Yang and 
Rannala 

1997 
Stadler 
2009

Stadler et al. 2012 
See also: Stadler and Yang 2013



Sample age uncertainty

88

age uncertainty

Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology in Time Calibrated Tree Inference 
Barido-Sottani et al. 2018, 2020 

Putting the F in FBD analyses: tree constraints or morphological data? Barido-Sottani et al. 2023



The inseparability of sampling and time and its influence on attempts to unify the molecular & fossil records 
Hopkins et al. 2018. Paleobiology

fossil age uncertainty

Stratigraphic ranges



The fossilised birth-death range process

90

The fossilised birth-death model for the analysis of stratigraphic range data under different speciation modes 
Stadler et al. 2018. JTB



FBD process for analysis of 
specimen level data

The FBD range process for analysis of 
stratigraphic ranges

Pr( | )λ μψ

P( | )λ μ
ψ
ρ



Used >170 times to data (mainly in 
macroevolution) 

Can be applied to a wide range of 
scenarios 

Upper limit is about 500 samples/tips 

Not practical with large alignments  
 
Computational cost comes from 
sampling tree space

When can you use the FBD process?
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Exercise
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https://phylogenetics-fau.netlify.app/exercise-07b


Phylodynamics

94

 Diversification rate estimation



Bayesian divergence time estimation
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Tree shape is informative about underlying dynamics

96

the supply of susceptibles. This feedback,
along with the effect of pathogen epidemic
dynamics on genetics in other systems, is
illustrated schematically in fig. S1A.

Partial immunity to influenza A virus
also generates strong fitness differences
among strains, leading to rapid strain turn-
over. Such continual immune selection de-
termines the shape of phylogenies of the
HA (Fig. 1E) and NA genes; these are
strongly temporal in structure with high
rates of lineage extinction, so that genetic
diversity at any time is limited. The central

trunk depicts the ancestry of the successful
lineages and has the highest rate of amino
acid replacement at key antigenic sites (9),
suggesting that immunological distance
from previous strains determines viral fit-
ness. Although substantial progress has
recently been made in integrating the
individual- and population-level dynamics of
influenza (5), the role of within-host dynam-
ics remains to be added to the picture. Influ-
enza B, and influenza A in other mammals,
generally shows more complex patterns of
antigenic drift (fig. S1B). In addition to anti-

genic drift, influenza pandemics can be
caused by novel HA and NA combinations
(antigenic shift). Aquatic birds are the natural
reservoirs of influenza A viruses and harbor a
variety of antigenic types, thereby providing
an environment in which new recombinant
subtypes can arise and transmit to mammals.

This phylodynamic category also includes
foot and mouth disease virus (FMDV), which
causes a highly infectious acute epidemic
disease of livestock. Primary infection or
vaccination gives imperfect protection
against other variants of the virus, and there is

Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HA1) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the
virus genotype 1b E1E2 gene sampled from different pa-
tients (65 sequences, 1677 bp). (I) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled
from a single patient over 5.8 years [58 sequences, 627 bp;
patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46 ). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.

R E V I E W

16 JANUARY 2004 VOL 303 SCIENCE www.sciencemag.org328

This paper coined the term phylodynamics 
Grenfell et al. 2004. Science



First used for tracking the spread of infectious diseases
The skyline birth-death process

97

Stadler et al. 2012. PNAS 
Gavryushkina et al. 2014. PLoS Comp Bio

https://www.pnas.org/doi/10.1073/pnas.1207965110


Macroevolutionary case study

98

Lloyd2). For the ornithischians, the two Benson and larger Lloyd
trees all indicate a latest Cretaceous decline (94.5% of posterior
negative for Benson1, 94.6% for Benson2, 97.3% for Lloyd2),
whereas the smaller Lloyd tree suggests no substantial change in
diversity during this interval (49.2% of posterior negative).

The results of the birth-death analyses are summarised in
Figures 2 and 3, which show the piecewise-constant estimates of
diversification and sampling rates, respectively, from each of the
phylogenies, and Supplementary Tables, which provide the esti-
mated parameter values. There is less variation in the BDSKY
results between the different subclades, and based on the different
tree topologies, than in the coalescent results.

The most apparent pattern is that all of the models have much
greater uncertainty on diversification rates in the final time bin, the
Coniacian–Maastrichtian (Figure 2). This is coupled with an
increase in the inferred sampling rates during this interval
(Figure 3). In the full phylogenies and all three subclades, the scale
of this effect decreases with increasing phylogeny size.

Despite this, in the BDSKY analyses, all four phylogenies place
most posterior probability on a positive diversification rate for
dinosaurs in the latest Cretaceous (90.0% of posterior positive for
Lloyd1, 98.0% for Benson1, 98.1% for Benson2, 99.9% for Lloyd2).
In all three subclades, it is more unclear as to whether

diversification was positive or negative, or simply constant, prior
to the K-Pg boundary. All of the models appear to favour positive
diversification in the Late Jurassic (99.9% of posterior positive for
Lloyd1, 100.0% for Benson1, 100.0% for Benson2, 100.0% for
Lloyd2), and also in the Aptian–Turonian (98.4% of posterior
positive for Lloyd1, 98.4% for Benson1, 97.4% for Benson2,
99.2% for Lloyd2).

Discussion

In this study, we characterise dinosaur diversification using two
different phylodynamic models: the birth-death-sampling
(BDSKY) and coalescent skyline models. The coalescent model
recovered a downturn in diversity during the latest Cretaceous with
a posterior probability of 97% using the Benson phylogenies, and a
posterior probability of 94% using the larger Lloyd phylogeny
(Figure 1). The BDSKY model instead inferred an increase in
dinosaur diversity in the latest Cretaceous with a posterior prob-
ability of more than 98% based on these three largest phylogenies
(Figure 2). Our results therefore span the range of diversification
estimates obtained using other methods in previous literature. The
difference in results we obtained using the two phylodynamic
models can be linked directly to the different assumptions they
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Figure 2. Diversification rates estimated using the piecewise-constant fossilised birth-death skyline model. Time moves forwards from left to right along the x-axis, with the K-Pg
boundary at the end of the Coniacian–Maastrichtian bin. Estimates are shown for each of four phylogenies, ordered from smallest to largest. Points show the median values, and
error bars indicate 95% highest posterior density. Dinosaur silhouettes for Ornithischia (top right), Sauropodomorpha (bottom left) and Theropoda (bottom right) are from
Phylopic.

Cambridge Prisms: Extinction 5
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Phylogenies have been 
used to argue dinosaurs 
were incline prior to the 
KPg 

FBD analyses suggest 
that we can not 
currently answer that 
question using 
phylogenies

Allen et al. 2024. Extinction



Models that include 
migration

99

Epidemiological parameters. Several epidemiologically relevant pa-
rameters were coinferred along with the transmission tree. First,
we report on the reproductive number in the different regions,
which varied from 1.2 to 1.9 in Hubei to 2.5 to 3.5 in France (SI
Appendix, Fig. S2A). Second, we report on the prevalence of no-
longer infectious cases in each region as of the collection date of
the last analyzed sequence. This quantity can be back-calculated
from the inferred sampling proportion (prevalence = no. se-
quences analyzed/sampling proportion). We note that both the
sampling proportion and prevalence estimates have large credi-
ble intervals (SI Appendix, Fig. S2 B and C). Of the European
regions analyzed, the outbreak in Germany was estimated to be
smaller in early March (150 to 485 cumulative cases) than the
outbreaks in France (709 to 2,185 cases) and other European
countries (719 to 1,782 cases), while the outbreak in Italy was the
largest (2,600 to 4,923 cases).

Comparing Rates of Migration and within-Region Transmission. Fig. 2
compares the rate at which we estimate new cases to arise in
each region from migration versus from within-region transmis-
sion. The estimated rates of new cases from migration and
within-region transmission are represented here as point esti-
mates 5 d before the date of case confirmation, which assumes a
5-d delay between infection and onward transmission or migra-
tion [the choice of 5 d is motivated by serial interval estimates for
SARS-CoV-2 (18)]. We emphasize that we do not consider any
non-European regions beyond Hubei; therefore, transmission
from Hubei to a not-included location and then to Europe is
considered to be migration directly from Hubei to Europe under
our model.
Beginning with the first day on which we have case data from

Hubei, we estimate a substantial risk of infected individuals
migrating from Hubei into European regions. Throughout late
January to mid-February 2020, cases were sporadically detected
in each European region, each of which is associated with a risk
of subsequent within-region transmission. Sustained within-
region transmission is first evident in Italy in mid-February.
Shortly thereafter, sustained within-region transmission occurred
in other European countries, in France and in Germany. By 8
March 2020, the estimated rate of occurrence of new cases from
within-region transmission is within or exceeds the estimated

bounds on the rate of new cases from migration for each region
considered (SI Appendix, Fig. S7A). We obtain the same quali-
tative result in our sensitivity analysis using a very different prior
on the migration rate (SI Appendix, Fig. S7B). We note that the
rates in Fig. 2 are underestimates of the rates of new cases arising
due to migration or transmission due to the underreporting in
the confirmed case data. However, assuming that the amount of
underreporting is comparable across regions, we can indeed
compare the rates.
Finally, we report support for a decrease in migration rates

from Hubei into European regions at the date of the lockdown of
Wuhan (SI Appendix, Fig. S1). We infer that migration decreased
by 40% (95% highest posterior density interval 0–87%). Again,
we note that the migration rate out of Hubei is not necessarily
specific to Hubei, since we do not consider possible migration
paths through other non-European locations.

Discussion
We inferred the early spread of the SARS-CoV-2 virus into and
across Europe as well as the geographic origin of the predomi-
nant A2a lineage spreading in Europe. To do this, we applied a
previously published phylodynamic model to analyze publicly
available viral genome sequences from the epidemic origin in
Hubei, China and from the earliest detected and largest Euro-
pean outbreaks before 8 March 2020. After performing Bayesian
inference, we: 1) Report on inferred patterns of SARS-CoV-2
spread into and across Europe, 2) compare posterior probabili-
ties for several hypotheses on the origin of the A2a lineage, 3)
report on epidemiological parameters, and 4) compare the
timeline of new cases resulting from migration versus within-
region transmission in Europe before borders were closed.
Genome sequence data indicates that prior to 8 March 2020,

SARS-CoV-2 was introduced from Hubei province into France,
Germany, Italy, and other European countries at least two to
four times each (Table 1). These estimates, which are based on
genome sequence data and thus do not rely on having line list
data for individual migration cases, provide a complementary
account of introduction events compared to line list data (19)
and phylogenetic inferences combining genome sequence and
line list data (20–25). The introduction events we report here are
inferred to have occurred along the transmission tree specific to
the analyzed sequence set and are not attributable to individual

Fig. 2. Estimated rate of new cases arising from migration compared with the estimated rate of new cases arising from within-region transmission. For each
day, we multiplied the (smoothed) number of newly confirmed cases in each source region by the posterior sample of migration rates from source to sink. The
median of these rates is shown in the “Migration” row. We also multiplied the (smoothed) number of newly confirmed cases in each sink region by the
posterior sample of transmission rates for the region. The median of these rates is shown in the “Within-region transmission” row. Gray shaded regions
indicate dates on which new cases were reported in each region. Dates are lagged 5 d to account for a 5-d delay between infection and migration or onward
transmission and daily case counts were smoothed by taking a rolling 7-d average. Case data comes from the Johns Hopkins Center for Systems Science and
Engineering (https://github.com/CSSEGISandData/COVID-19).

4 of 8 | PNAS Nadeau et al.
https://doi.org/10.1073/pnas.2012008118 The origin and early spread of SARS-CoV-2 in Europe
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The origin and early spread of SARS-CoV-2 in Europe  
Nadeau et al. 2021. PNAS
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Bayesian divergence time estimation

100
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Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. (2020)



Using PCMs for dating
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Álvarez-Carretero et al. (2019) Bayesian Estimation of Species Divergence 
Times Using Correlated Quantitative Characters

https://www.annualreviews.org/doi/pdf/10.1146/annurev-ecolsys-110218-024555
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Cultural evolution
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←Typo-Chronology of 
Palaeolithic stone tools

After Nicolas (2017)

Outline based NJ tree →

Matzig et al. 2021. 
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The tree topology 
of stone tools 
exhibits a lot of 
uncertainty

Matzig et al. (in review) A macroevolutionary 
analysis of European Late Upper Palaeolithic 
stone tool shape using a Bayesian phylodynamic 
framework (preprint available)



Sensitivity 
analyses

Birth, death, and 
sampling rates 
are impacted by 
trait and taxon 
sampling
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Joint phylogenetic estimation of 
geographic movements and biome shifts

105

Landis et al. (2023) Systematic Biology

https://onlinelibrary.wiley.com/doi/full/10.1111/pala.12679


Study background
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Data

163 extant species (127 with DNA) 

5 fossils (with taxonomic 
constraints) 

6 AeoAraphic areas 

4 biomes 

Global diversity of Viburnum
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FIGURE 1. Global diversity of Viburnum across six areas and four biomes. Areas are marked with colored polygons for Southeast Asia
(magenta), East Asia (red), Europe (green), North America (yellow), Central America and Mexico (cyan), and South America (blue). Counts of
local species with biome affinities are reported for each area with pie charts, with the area of each chart the corresponding to the total number
of local species. Biomes are colored as tropical (red), warm temperate/lucidophyllous (green), cloud forest (sky blue), and cold temperate forest
(dark blue). The locations and biomes for the five fossil pollen specimens are represented with smaller markers with black borders.

species. Raw RAD-seq data have been submitted to NCBI
SRA under project number PRJNA605569. Supplement
2 (available on Dryad) details how the raw RAD-seq
data were generated and how they were assembled with
ipyrad v.0.7.13 (Eaton 2014).

The RAD-seq topology for the 127 Viburnum and
outgroup species was inferred under a concatenated
GTR+Gamma model using RAxML (Stamatakis 2014).
Outgroup species were then pruned from the estimated
tree to yield the topology for 118 of ∼163 (72%) Viburnum
species. Nodes with equivocal bootstrap support (P<
0.99) were collapsed into polytomies, resulting in the
RAD-seq backbone topology used in Stage 2.

Stage 2: Joint Bayesian Macroevolutionary Inference
We constructed a phylogenetic model to jointly estim-

ate species relationships, divergence times, fossil ages,
biogeographical histories, and biome shifts. Below, we
first describe the data used for Stage 2, and then the
components of the macroevolutionary model.

Molecular sequences for 153 of ∼163 (94%) extant spe-
cies were used to estimate species relationships among
35 lineages that were not topologically constrained and
to estimate all phylogenetic divergence times under a
relaxed clock model. For this, we assembled previously
published sequences for 138 extant viburnums for nine

chloroplast genes (matK, ndhF, petBD, psbA, rbcL, rpl32,
trnC, trnK, and trnSG) and one nuclear ribosomal marker
(ITS). We then replaced 34 of those sequences that ori-
ginated from herbarium or botanical garden specimens
with new sequences extracted from field specimens that
we collected. In addition, we sequenced 15 previously
unsequenced species for this study, bringing the total
number of species for these data to 153. The final matrix
contained 22.6% missing cells. All taxa in the Stage 1
RAD-seq data set were also represented in this Stage
2 cpDNA data set. Sequences were aligned in Muscle
then manually adjusted in AliView as needed. Sequence
accession numbers are given in Supplement 3 (available
on Dryad).

Geographical regions and biome affinities were scored
for all 163 extant species and for the 5 fossil specimens.
All species ranges were coded into one or more of six
discrete areas: Southeast Asia, Eastern Asia, Europe,
North America, Central America, and South America.
These areas are meant to reflect the major centers of
endemism for plant clades distributed around the North-
ern Hemisphere (Laurasian distributions); however, we
omitted Western North America as only one species of
Viburnum (V. ellipticum) is endemic to that region. We
subdivided Asia into Eastern and Southeastern regions
to reflect patterns of endemism in Viburnum, especially
the distribution of a number of lineages in Southeast Asia
(Vietnam, Malaysia, Indonesia, and the Philippines).
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• Can we inteArate GeoGraphic ranGe and biome data into 
analysis usinA the FBD model? 

• What can we learn about the diversification history of the 
Viburnum?

108



Analysis

1. Estimate the extant topoloAy usinA maximum likelihood 

2. Joint inference diverAence times, bioAeoAraphic and biome history  
(normally we first infer a dated tree, and then separately infer 
bioAeoAraphic history) 

3. Ancestral state reconstruction  

4. + various sensitivity analyses

109
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FIGURE 3. Viburnum ancestral ranges estimated from the Complete data set. Node colors correspond to range states (legend). Only the three
most probable range states are reported for each node, while all less probable states are grouped together under the “...” label and colored gray.
A) Range probabilities for the ancestral range and the daughter ranges at each internal node with pie charts. Taxon labels for unsequenced extant
taxa are colored gray. B) A subsample of stochastic mappings for the same six posterior samples as shown in Figure 4.
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FIGURE 4. Viburnum ancestral biomes estimated from the Complete data set. Node colors correspond to forest biome affinity states (legend). A)
Probabilities are given by pie charts at nodes. Taxon labels for unsequenced extant taxa are colored gray. B) A subsample of stochastic mappings
for the same six posterior samples as shown in Figure 3.
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Results summary

• Joint inference usinA the FBD and 
bioAeoAraphic models allows us to 
estimate a rich diversification history 

• Major lineaAes of Viburnum likely 
oriAinated in warm / temperate 
reAions and later adapted to the cold 

• Fossils can chanAe the results
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FIGURE 5. Viburnum biome and biogeography state frequencies through time taxa as estimated from the Complete data set. Subplots in the left
column report the frequency of lineages across biome states given for all lineages with sampled descendants found within a particular region.
Subplots in the right column are similar, except they report regional frequencies across lineages given a particular biome state. Time bins with
too few posterior samples to guarantee accurate frequency estimates were marked as empty (see main text).

probable than any nonfreezing biome (pp < 0.50) until
the degree to which missing data favors freezing forests
is high (Pr(Xroot =Cold)=0.82). Only when we assume
that any missing data are extremely biased toward a
freezing origin for Viburnum (Pr(Xroot =Cold)=0.99) do
we confidently estimate such a cold origin (pp > 0.95).

Biome and Biogeography State Frequencies
Reconstructed Viburnum lineages resided in different

biomes depending on their ages and on the regions that
they occupied, all of which varied over time (Fig. 5).
Lineages that are 50 Ma or older generally inhabited
warm temperate forests, particularly throughout the
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“It is, it must be admitted, a humblin( task to infer ancient events, and the 
results in many cases are tenuous at best. Given the obvious limitations of 
workinB with extant species and few, if any, fossils, it is necessary to inte(rate 
all of the available sources of evidence if we hope to produce assurinB 
answers.”
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Landis et al. (2023) Systematic Biology 
Joint phylogenetic estimation of geographic movements and biome shifts

https://onlinelibrary.wiley.com/doi/full/10.1111/pala.12679
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for Bayesian time tree estimation. All open source.
A few notes on software
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1001… 
1101… 
0100…

ATAT… 
TCAC…  
????...

• MCMCTree — BDSS process, continuous trait models. Best option for large 
sequence alignments and trees. Requires a fixed tree. Language: C 

• PhyloBayes — for extant time tree inference. Good for amino acid data. C++ 

• MrBayes — FBD model, some unique clock models. Easy to use. C++ 

For increased modularity & flexibility: 

• BEAST2 — FBD model, lots of flexible tree and character evolution models. More 
widely used in epidemiology. Java. (Sister software BEAST 1.8) 

• RevBayes — FBD model, lots of flexible tree and character evolution models. C++. 
Uses graphical models. Developed by folk closer to macroevolution 

http://beast2.org/
https://beast.community/index.html
http://revbayes.github.io/


When do use different software?

115

Scenario Software

Large datasets of extant taxa and node calibrations MCMCTree

If want (or have to) fix the tree topology MCMCTree

If fossil sampling is sparse or complex MCMCTree

If you have abundant fossil data, or are interested in the 
topological position of fossils BEAST2, RevBayes

If you’re interested in the phylodynamic parameters BEAST2, RevBayes

If you want to use a specific model BEAST2, RevBayes, 
MCMCTree


