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Objectives for today and tomorrow

Intro to Bayesian phylogenetics in paleobiology

* Tree building * Tree models
» Substitution models * Diversification rates
» Dating trees » Morphological models

* Clock models



Please ask questions!



Today's objectives

* Intro to RevBayes

 Bayesian tree inference

» Morphological models N s Y

Time tree from Darwin's Origin of Species



What is phylogenetics?



 populations Data
Time

* Species « DNA

* Viruses » morphology
» cells * words

* languages

In this course we mainly
focus on trees that include
one representative per
species

| ) | | / Scots poem - also the BEAST? logo!



https://blogs.baruch.cuny.edu/poemofthemonth/2011/11/17/to-a-mouse/
https://www.beast2.org

Research topics in phylogenetics

Data
collection
Empirical Exploring model Testing Implementing Deriving
analysis assumptions models models models
o ¢ ¢ ¢ ¢

Applications Theory



Trees in paleobiology



Tsagkogeorga et al. (2015)

What can we learn from trees?
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(ii)

(iv)

(iii)

Erinaceus europaeus
Sorex araneus

Myotis lucifugus

Pteropus vampyrus 2
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Canis familiaris >
Ailuropoda melanoleuca g
Mustela putorius furo S
Equus caballus )
Vicugna pacos %
Sus scrofa
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Ovis aries

Hippopotamus amphibius

Balaenoptera acutorostrata
Megaptera novaeangliae
Balaenoptera physalus
Physeter macrocephalus
Lipotes vexillifer
Neophocaena phocaenoides
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Sousa chinensis

Tursiops truncatus
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II. Cetacea

.

How are our favourite species
related?

Does the phylogeny support
the taxonomy?


https://royalsocietypublishing.org/doi/10.1098/rsos.150156
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What can we learn
from trees?

» Evolutionary relationships
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Indian cichlids

Malagasy and

|

What can we learn o~
from trees?
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Image adapted from Friedmann et al. (2013)



https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.1733

Phylogenetics

Phylogenetics aims to reconstruct the phylogeny of individual samples based on
molecular or morphological character data

A phylogeny captures part of evolutionary history that is otherwise not directly
observable

Phylodynamics aims to quantify the processes that gave rise to the tree,
e.g., speciation, extinction
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What do we mean by model?

(the following is my take on things — intended to be useful but not definitive)



What is a statistical model? When is an equation a model?
What is a mechanistic model?

What is the difference between an algorithm and a model?

14



A statistical model is a type of model that includes a set of assumptions
about the data-generating process

It should be possible to simulate data under the assumptions of the model

If we're lucky, we might also be able to estimate parameters under the
model*. This isn't always possible because some models are too complex

*A fancy way of saying this is, "we can perform inference under the model”
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https://en.wikipedia.org/wiki/Statistical_model

An example

In(homerange)

The solid black line is a linear
regression line

We can estimate the parameters of
the regression model

y=XB+e¢

It's also straightforward to simulate
data under this model

Image source Harmon (2019)
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https://lukejharmon.github.io/pcm/chapter5_mvbm/

Non model-based approaches are still useful

Four fundamental classes of taxa

confined to interval

only bottom boundary crossed

bl-

only top boundary crossed

both boundaries crossed

Time interval of interest

Foote (2000)

Ft

bt

The boundary-crosser and three-
timer metrics are not models

They provide a clever way of
approximating origination and
extinction rates (and often perform
well), but don't describe the data
generating processes

17



Mechanistic or process based models are based on ‘physical principles’. They
describe the data as a function of a set of parameters that have a tangible

biological or geological meaning

A regression model is not mechanistic - it describes the relationship between
x and y but the parameters don't have a biological meaning

Many models used in phylogenetics are mechanistic, e.g., they might include
parameters for origination, extinction, or sampling
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https://en.wikipedia.org/wiki/Statistical_model

An algorithm is a precise rule (or set of rules) specifying how to solve some
problem

1 =1 for 1 i1n range(1l,11):
while 1 < 11: print (1)
print (1)

1 =1 + 1

Used in phylogenetics for all sorts of tasks, e.g., traversing tree space


https://www.cs.cmu.edu/~15110-n15/lectures/unit03-Algorithm-1.pdf

Mini reading group N



Next

» graphical models
* RevBayes
» Bayesian inference

- MCMC

21



Image source Tracy Heath

How do we find the ‘best’ tree?

better

worse

22



It depends how you measure ‘best’

Method Criterion (tree score)

Maximum parsimony Minimum number of changes

Likelihood score (probability), optimised over branch lengths
and model parameters

Posterior probability, integrating over branch lengths and

Bayesian inference
model parameters

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used
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RevBayes



Phylogenetic inference — the old way

What we might call a

Model “black box” approach

P) | developers

Empirical ﬁ
researchers




Phylogenetic inference — a better way?

Model
developers

«
] :

e

Empirical
researchers

‘

The goal is to bring
researchers with different
expertise together,
increase transparency, and
do better research
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® © : v < ) m @ revbayes.github.io <€) ¢ ['b +

& Download Tutorials Documentation Interfaces Workshops Jobs Developer

RevBayes

Bayesian phylogenetic inference using probabilistic graphical models and an interpreted

O O O language

About

RevBayes provides an interactive environment for statistical computation in phylogenetics. It is primarily intended for modeling, simulation, and Bayesian

inference in evolutionary biology, particularly phylogenetics. However, the environment is quite general and can be useful for many complex modeling tasks.

RevBayes uses its own language, Rev, which is a probabilistic programming language like JAGS, STAN, Edward, PyMC3, and related software. However,
phylogenetic models require inference machinery and distributions that are unavailable in these other tools.

The Rev language is similar to the language used in R. Like the R language, Rev is designed to support interactive analysis. It supports both functional and
procedural programming models, and makes a clear distinction between the two. Rev is also more strongly typed than R.

RevBayes is a collaboratively developed software project.

GitHub | License | Citation | Users Forum
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Graphical models



Graphical models

Provide tools for visually and
computationally representing
complex, parameter-rich models

Depict the conditional dependence
structure of parameters and other
random variables
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Types of variables (nodes)

||
O

a) Constant node
b) Stochastic node

c) Deterministic node

d) Clamped node

(observed)

a. fixed value variables

b. random variables that depend on
other variables

c. variables determined by a function
applied other variables (transformations)

d. observed stochastic variables (data)

30



a) Constant node
b) Stochastic node

c) Deterministic node

d) Clamped node

(observed)

e) Plate

a. fixed value variables

b. random variables that depend on
other variables

c. variables determined by a function
applied other variables (transformations)

d. observed stochastic variables (data)

e. repetition over multiple variables
(equivalent to a loop)
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Specifying graphical models using the Rev syntax

Table 1: Rev assignment operators, clamp function, and plate/loop syntax.

Operator Variable
<- constant variable
~ stochastic variable
P = deterministic variable
node.clamp(data) clamped variable

= inference (i.e., non-model) variable
for(i in 1:N){...} plate



















Exercise


https://phylogenetics-fau.netlify.app/exercise-02

Bayesian tree inference



Bayes' theorem

Pr( data | model ) Pr( model )

Pr( model | data ) =
Pr( data)



Bayes' theorem

Pr( model | data ) =

The probability of the
data given the model
assumptions and

parameter values
Likelihood

Pr( data | model ) Pr( model )

Pr( data)
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Bayes' theorem

Pr( model | data ) =

Priors

This represents our
prior knowledge of
the model
parameters

Pr( data | model )/ Pr( model )

Pr( data)
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Bayes' theorem

Pr( model | data ) =

Pr( data | model ) Pr( model )

Pr( data)

Marginal probability

The probability of the
data, given all possible
parameter values. Can
be thought of as a
normalising constant

43



Bayes' theorem

posterior

Reflects our combined
knowledge based on the
likelihood and the priors

Pr( model | data ) =

Pr( data | model ) Pr( model )

Pr( data)

44



Image source Tracy Heath

How do we find the ‘best’ tree?

better

worse

45



It depends how you measure ‘best’

Method Criterion (tree score)

Maximum parsimony Minimum number of changes

Likelihood score (probability), optimised over branch lengths
and model parameters

Posterior probability, integrating over branch lengths and

Bayesian inference
model parameters

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used
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Components used to infer trees

without considering time

0101... E
1101... *
0100... L

data tree substitution

sequences or bt0p0|r<]>S|Jy ang nodel
characters ranch lengtns




Bayesian tree inference

likelihood priors

posterior

P (5 %

P25 %) P(&
P (3’18%}::.:)

0100.

=1l

O101...
1101...
0100...

marginal probability




Likelihood and substitution models



Molecular evolution




Deoxyribonucleic acid (DNA)

Nucleotide: Purines

.\Q* » Adenine (3)
u * Guanine (G)

phospate + sugar + nitrogenous
base

sugar-phosphate
backbone

N Pyrimidines
purines pyrimidines
A < \]'_ T ° CytOSine (C)
base pair G _1:_ C o Thym|ne (T)*

Image source Decoding Genomes Stadler et al. (2024) *Replaced by uracil (U) in RNA


https://www.research-collection.ethz.ch/handle/20.500.11850/664449

The central dogma of biology

Genotype

\4
Phenotype

uracilo (U)

aminoacid

Glu

QNA replication

transcription

e

translation

!

Protein

+ structure

Image source Decoding Genomes Stadler et al. (2024)

DNA — RNA — protein

Each group of 3 successive
nucleotides in a gene is a
codon that encodes an
amino acid (or terminate
translation)

52


https://www.research-collection.ethz.ch/handle/20.500.11850/664449

The universal genetic code

~
S
T
<
&
I
(7]

danan

Ile Arg
(I) V (R)

3!

Image source Decoding Genomes Stadler et al. (2024)

Amino acid 3-letter 1-letter
code

Alanine
Arginine
Asparagine
Aspartic acid
Cysteine
Glutamic acid
Glutamine
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine

Ala
Arg
Asn
Asp
Cys
Glu
G1ln
Gly
His
Ile
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

code

< <= WMWUTNMT=TXNMFrM©*MIToomOoOo=zx>»

43 = 64 combinations

3 terminate translation

21 amino acids

93


https://www.research-collection.ethz.ch/handle/20.500.11850/664449

Mutation vs. substitution

Variation in genotypes (and in phenotypes) is due to errors that arise during
DNA replication

Individuals of the same species have identical characters at most positions in
their genome (only 0.1% vary among humans)

Most mutations are repaired but can persist across generations

Mutations that spread throughout a population and become fixed’ called
substitutions

o4



DNA sequencing

Multiple sequence alignment
software establishes homology
across sites from different
species

Duchéne (2021) Phylogenomics Primer

Taxon 3

Taxon 2

Tissue
collection

\{

Sequencing
into reads — | — L — —

\/

Assembly and
annotation

\{

Taxon 1

Taxon 2
Taxon 3
Taxon 4

Sequence
alignment

\{

Handling
of loci

\/

Species tree
inference

Gene tree 2

Taxon 1
Taxon 2
Taxon 3
Taxon 4

Gene tree 1


https://www.sciencedirect.com/science/article/pii/S0960982221010290

Multiple sequence alignment

Flu.nex

Nucleotide <

A
W

Geneious

Search
440 445

")
<

415 420 425 430 435
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Base 408 (T) in sequence 29: DUCK_HONGKONG_Y283_1997
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INEXUS

[Cytochrome oxidase B genes - bears]
[Data source: https://revbayes.github.io/tutorials/dating/]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=1000;
FORMAT DATATYPE = DNA MISSING=? GAP=- ;

MATRIX

Ailuropoda melanoleuca ATGATCAACATCCGAAAAACTCATCCATTAGTTAAAATTATCAACAACTCATTCATTGACCT . ..
Arctodus simus ATGACCAACATCCGAAAGACTCACCCACTGGCCAAAATTATCAATAACTCATTCATCGACCT . ..
Helarctos malayanus ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATTAACAACTCACTTATTGACCT . ..
Melursus ursinus ATGACCAACATCCGAAAAACCCACCCACTAGCTAAAATCATTAACAACTCACTCATTGACCT . ..
Ursus americanus ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCACTTATTGATCT . ..
Ursus arctos ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGACCT . ..
Ursus maritimus ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGATCT . ..
Ursus thibetanus ATGACCAACATCCGAAAAACCCATCCATTAGCCAAAATCATCAACAACTCACTCATTGATCT . ..
Ursus spelaeus ATGACCAACATCCGAAAAACCCATCCACTAGCTAAAATCATCAACAACTCATTCATTGACCT . ..
Tremarctos ornatus ATGACCAACATCCGAAAAACTCACCCACTAGCTAAAATCATCAACAACTCATTCATCGACCT . ..

END;




The data are the observed states at the tips

How probable is our data, given my tree?

A C A

To apply a model based approach
we need to be able to compute
the probability of our sequence
alignment (or character matrix)
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Some possible character histories...

A

There are infinitely many histories
leading to the same observed data

59



The data are the observed states at the tips

How probable is our data, given my tree?

A C A
To compute P we need:
A model of sequence (or character)
evolution
A way of calculating the probability

for given a phylogeny (tree topology
+ branch lengths)

Note branch lengths = rate x time

\/

60



Substitution models



Models of molecular sequence evolution

Also known as substitution / site / character models

They allow us to compute the probability of changing from one state to
another over branch length v

62



Computing the probability of the observed data

Just suppose for now

G G A
we know the ancestral
V3 V4 states at internal nodes
P = A
V2
vx
A

Paa (V1) X Paa (V2) X Pac (V3) X Pac (V1) Pii (v) — transition probabilities



Rate matrix

In this model, we

A T G C
only have one
A SA A A A parameter,
T A 3% A A substitution rate
Q = parameter A
G A A -B3A A
- 2 A \ o -3) This is the Jukes

Cantor (1969) or
JC69 model

64



Continuous time Markov chain

Nucleotide substitutions (events) occur at a constant rate

Time until the
first event

........................... Time until the
second event

......................... Time until the

Start observing third event

the process here

0 Time



The poisson process

Probability Density

Time

The waiting times are
exponentially distributed
random variables

We can use this to calculate
the probability of change
over time (or branch length v)

The longer the interval of
time, the more likely we
are to observe change

66



Exercise

Jukes-Cantor model transition probability applet

Written by Paul Lewis

6/


https://molevolworkshop.github.io/applets/jc-transition-probabilities/

Felsenstein's pruning algorithm

The following slides are adapted from John Huelsenbeck (c/o Sebastian Hohna)



Computing the probability of the observed data

Just suppose for now

G G A
we know the ancestral
V3 V4 states at internal nodes
P = A
V2
vx
A

P;i (v) — transition probabilities

T X Paa (V1) X Paa (v2) X Pag (V3) X Pag (V1) 1 — stationary frequencies
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Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.
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Root

Root Root Root

fSite:ﬂ'AX A —|—7TC>< O —|—7Tg>< G



Root Root

lsie = TA X L + 7o X AF + g X AF +7p X L7



Root

loive = TA X L3+ 7m0 X AN +7q X L5 +mp X A

Another nice description of the pruning algorithm: Harmon (2019) Phylogenetic Comparative Methods, Chapter 8
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https://lukejharmon.github.io/pcm/chapter8_fitdiscrete/

Other substitution models



Equal base frequencies (3 df)

IC

IC Rl K80 HKY SYM GTR
Base frequenas 70 T \McMGTT n T \cMGItr n T ATt I
Substiwuonrates P P (IB (IB OB s e Moy BoRG H s e

Transition rate equals 81
Transversion rate (1df) VS

R R
Equal transition rates and HKY
Equal transy ersion ratcs (4df) i VS
SYM GTR
Rates equal JC - ,» -st HKY GTR
among sites (! dfy - s Vs ' | ‘ i v§ L
JC+F K80+r' SYM+I F81+I‘ HKY+I"  GTR+I

YN /\ /\ /N /N YN

No invariable C JC+1" K80+r SYM SYM+F F81  F81+I" HKY HKY+l' GTR GTR+I
sites  (1df) . ive | _ 3 G S T a7 e VS Vs Vs _
| IC+1 JC+I+T K80+l K80+l+l" S +l SYM+!+T F81+1 F8I+4I+I" HKY+l HKY+I+I' GTR+l GTR+I+I"
A A AJ\R A A ANR A

JCIC+1 JC+T JC+I+1" K80 K80+l K8()+I K8O+I+1" SYM SYM+I SY \1+FSYM+I+F F81F81+] F81+[ F8l+l+I" HKY HKY+] HKY+[ HKY+k | GTR GTR+I GTR+I GTR+I+I

Posada & Crandall (1998)



Base frequencies

The JC69 model assumes equal transition rates and equal base frequencies
Base frequencies are the proportion of each nucleotide in the dataset

If a given nucleotide appears in our dataset at a low frequency, we are less
likely to observe a transition to that state

80



The general time reversible model

Q
X
HLGATTA
HCATA

UTATA

Tavaré (1986)

HAGTG HMACTC HMATTT

* UGCTC MGTTT

HCGTG *
HTGTG HTCTC

HCTTT
*

Allows for unequal transition rates
(b) and unequal base frequencies (1)

Note the rates are symmetric - e.g.,
the rate of change between A and T,
is the same in both directions - but
the frequency of each character state
also affects the probability of change

81



The JC versus GTR models



Branch lengths
Y

Branch lengths =
number of
expected number
of substitutions
per site

Branch lengths are a product
of rate and time

Without temporal information
we can only measure relative

genetic distance

83



Maximum likelihood




Image source Tracy Heath

How do we find the ‘best’ tree?

better

worse

85



It depends how you measure ‘best’

Method Criterion (tree score)

Maximum parsimony Minimum number of changes

Likelihood score (probability), optimised over branch lengths
and model parameters

Posterior probability, integrating over branch lengths and

Bayesian inference
model parameters

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used
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Bayesian tree inference

likelihood priors

posterior

P (5 %

P25 %) P(&
P (3’18%}::.:)

0100.

=1l

O101...
1101...
0100...

marginal probability




Uniform

JC

PhyloCTMC
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prior on the
branch lengths

JC

PhyloCTMC

90



we can combine
the topology and

branch lengths

JC

PhyloCTMC
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©

Substitution

O

model

JC

PhyloCTMC
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PhyloCTMC
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Uniform

Dirichlet

PhyloC

\

MC

* Dirichlet

for (i in 1:n_branches) {
bl[i] ~ dnExponential(10.0)
+

topology ~ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

alphal <- v(1,1,1,1,1,1)
alpha2 <- v(1,1,1,1)

er ~ dnDirichlet( alphal )
pi ~ dnDirichlet( alpha2 )
Q := fnGTR(er, pi)
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Introduction to MCMC



Probabilities vs probability densities

In phylogenetics, probabilities are not normally discrete (i.e., represented by a
single value)

We're often dealing with a lot of uncertainty and typically work with probability
densities

Probability densities introduce some complexity
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Probabilities vs probability densities

Pr density

A

A is drawn from an
exponential distribution
with mean 0

The x-axis represents the value of our
parameter A

The y-axis does have a value but it is not
so easily interpretable

The distribution height reflects the relative
probability of a given range of values

o8



Bayesian tree inference

likelihood priors

posterior

P (5 %

P25 %) P(&
P (3’18%}::.:)

0100.

=1l

O101...
1101...
0100...

marginal probability




Bayesian tree inference

OlO01l...
1101...
0100...

- %)P((%)dE%

this part is incredibly
difficult to calculate!




What is Markov chain Monte Carlo (MCMC)?

A group of algorithms for approximating the posterior distribution (also known as
samplers)

Markov chain means the progress of the algorithm doesn't depend on its past

Monte Carlo (named for the casino in Monaco) methods estimate a distribution
via random sampling

We use this algorithm to visit different regions the parameter space. The number
of times a given region is visited will be in proportion to its posterior probability
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What is Markov chain Monte Carlo (MCMC)?

prior .. 7T

"w

posterior

Copyright © 2018 Paul O. Lewis

The aim is to produce a
histogram that provides a good
approximation of the posterior
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Flowchart

Accept any
changes that
Increase

the posterior

Occasionally
accept
changes that
decrease the
posterior

The Metropolis-Hastings algorithm

Generate
starting values

Perturb parameter
values

Evaluate
parameter values

(-----

Log parameter
values

Pseudocode

initialize starting values;

for 1 in mcmc steps

do

done

propose new parameter values;

calculate the Hastings ratio R;

if(R>1)
accept the new values;
else

accept the new values with Pr

store the values with frequency j;

R;
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MCMC robot's rules

Drastic “off the cliff”

downhill steps are almost
never accepted

Slightly downhill steps
are usually accepted

ay
gy
Ny
[ ]
......
Ny
ay
uy
[

Uphill steps are
always accepted

Copyright © 2018 Paul O. Lewis
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10

Slightly downhill steps are usually
accepted because R is near |

Currently at 6.2 m

Proposed at 5.7 m
R =5.7/6.2 =0.92

Ny
gy
ny
]
......
gy
uy
"y
[

Uphill steps are always
accepted because R > |

Currently at 1.0 m
Proposed at 2.3 m

R=23/1.0=2.3

Drastic “off the cliff” downhill

steps are almost never accepted
because R is near 0

Currently at 6.2 m
Proposed at 0.2 m

R=0.2/6.2=0.03

Metropolis et al. 1953. Equation of state calculations by fast
computing machines. J. Chem. Physics 21(6):1087-1092.
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When calculating the ratio (R) of posterior densities, the marginal
probability of the data cancels.

p(D | 60%) p(6%)

p@*|D) _— ppy  _ pD[O*) p(0F)

p@|D)  PLRIOPO  p(D|6) p(6)
p)

Posterior Apply Bayes' rule to Likelihood Prior
odds both top and bottom ratio odds

Copyright © 2018 Paul O. Lewis
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Hastings ratio

new parameter
values

P(%
P(f %6

0100..

oy
|

0101

1101.

'::.)

0100..

O101..
1101..

)

/

0100

O101...
1101...
0100...

O101...
1101...

0100...

P(

O0101...
1101...

0100...

010J/.
1141...

00...

= %) P(£%)
P~

00...

The marginal

probability of the
data cancels out

All we're left to
calculate is the
likelihood ratio and
the prior odds ratio
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The proposal distribution
is used by the robot to

choose the next spot to

step, and is separate from
the target distribution.

PrO pOsa | S "good” proposal

distribution

The target is usually the posterior distribution

Copyright © 2018 Paul O. Lewis
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Summarising the posterior

[ NN Tracer
Trace Files: A Marginal Density  |/# Joint-Marginal s Trace
Trace File States Burn-In
primate-mtDNA ... | 10000000 1000000 Summary Statistic clockRate
mean 0.0116
* R stderr of mean 4.5711E-5
n stdev 1.9587E-3
Traces: variance 3.8363E-6
Statistic Mean ESS median 0.0115
° posterior -5515.... 2387 R value range [5.8576E-3, 0.022]
Tra cer IS an kelihood 544l 2349 K T S
prior -73.169 1379 R 95% HPD interval [7.9933E-3, 0.0156]
treeLikelihood.1stpos -1383.... 3189 R auto-correlation time (ACT) 4902.9582
e treelLikelihood.2ndpos -952.37 2885 R effective sample size (ESS) 1835.8
a m a Z I n ro ra m treeLikelihood.3rdpos  -2148.... 1687 R number of samples 9001
treeLikelihood.noncod... -957.267 1731 R
TreeHeight 83.827 1409 R "
® mutationRate.1stpos 0.45 852 R
fo r eX I O rl n mutationRate.2ndpos  0.182 714 R 500
mutationRate.3rdpos 2.949 646 R
mutationRate.noncoding 0.346 1344 R
gammaShape.1lstpos 0.496 889 R
M C M C O Ut p Ut gammasShape.2ndpos  0.575 911 R 400-
gammaShape.3rdpos 3.022 726 R
gammaShape.noncodi... 0.244 1006 R .
kappa.lstpos 6.235 719 R
kappa.2ndpos 8.5 1359 R
kappa.3rdpos 28.777 365 R 300-
kappa.noncoding 13.478 875 R o>
CalibratedYuleModel -47.285 1755 R e
birthRateY 2.561E-2 3805 R 5
logP(mrca(human-chi... -0.731 9001 R g
mrcatime(human-chi... 5.949 8655 R Y- 200+
clockRate  |1.161E-2 [1836  [R]
1001
0 —_— . — .
0.005 ! 0.015 0.02 0.025

clockRate

Type: (R)eal (hnt (C)at
Setup... - Bins: 50 B
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Summarising the posterior

® O Tracer
Trace Files: A Marginal Density  |# Joint-Marginal  As Trace
Trace File States Burn-In
tutorial_runl.log 200000 20000 Summary Statistic clockRate
mean 0.0107
bl Fhos stderr of mean 7.7591E-4
~ stdev 2.4897E-3
Traces: variance 6.1985E-6
Statistic Mean ESS median 0.0103
° posterior -9115.... 22 R value range [8.8632E-3, 0.0262]
Tra ceriIs an kelihood i 2k o
prior -177.165 8 R 95% HPD interval [8.8632E-3, 0.0153]
treeLikelihood -8937... 20 R auto-correlation time (ACT) 17677.7058
® TreeHeight 9.704 R effective sample size (ESS) 10.2
a I I l a Z I n ro ra I I l clockRate ] 1.067E-2 _ﬂ number of samples 181
freqParameter.1 0.263 R
freqParameter.2 0.249 35 R -
° freqParameter.3 0.239 19 R
fO r eX I O rI n freqParameter.4 0.25 24 R 50
rateAC 1 19 R
rateAG 0.91 23 R
rateAT 0.964 21 R
MCMC output A
rateGT 0.916 24 R
popSize 34.573 16 R B
CoalescentConstant -158.016 9 R
30-
>
g
5
g
Y- 20
107
0 H g , : , ” :
0.005 0.015 0.02 0.025 0.03
clockRate

Type: (Real (Hnt (C)at

Setup... - Bins: 50 B
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ummarising the posterior

Summarising trees is
much more challenging

Presenting a single
summary tree can be
misleading

melpomene clade
Silvaniform clade
erato clade

sara clade

Basal Heliconius

Heliconius cydno

H. timareta

H. melpomene

H. melpomene reference
H. pardalinus

H. besckei

H. numata

H. doris

H. erato

H. e.demophoon reference
H. erato H. himera hybrid
H. himera

H. hecalesia

H. telesiphe

H. demeter

== H.sara

—— Eueides tales

~ Agraulis vanillae

‘

#

e
\ 4

-
N\

14L(LE
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Summarising the posterior

Maximum clade credibility (MCC) tree — the tree in the posterior sample that
has the highest posterior probability (i.e., clade support) across all nodes

The 95% highest posterior density (HPD) — the shortest interval that contains

95% of the posterior probability. The Bayesian equivalent of the 95%
confidence interval

Marginal posterior density — the probability of a parameter regardless of the
value of the others, represented by the histogram
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Exercise


https://phylogenetics-fau.netlify.app/exercise-04

