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Objectives for today and tomorrow

Intro to Bayesian phylo>enetics in paleobiolo>y 

• Tree buildin> 
• Substitution models 
• Datin> trees 
• Clock models
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• Tree models 
• Diversification rates 
• Morpholo>ical models 



Please ask questions!
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Today’s objectives

• Intro to RevBayes 

• Bayesian tree inference 

• Morpholo>ical models
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Time tree from Darwin’s Origin of Species 



What is phylogenetics?

5



• populations  
• species 
• viruses 
• cells  
• lan>ua>es
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Data 
• DNA 
• morpholo>y 
• words

Time

In this course we mainly 
focus on trees that include 
one representative per 
species

Scots poem - also the BEAST2 loDo!

https://blogs.baruch.cuny.edu/poemofthemonth/2011/11/17/to-a-mouse/
https://www.beast2.org


Research topics in phylogenetics
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Applications Theory

Testing 
models

Implementing 
models

Empirical 
analysis

Exploring  model 
assumptions 

Deriving 
models

Data 
collection



Trees in paleobiology

8



How are our favourite species 
related? 

Does the phylo>eny support 
the taxonomy? 

What can we learn from trees?
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https://royalsocietypublishing.org/doi/10.1098/rsos.150156


What can we learn 
from trees?
• Evolutionary relationships
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What can we learn 
from trees?
• Evolutionary relationships 

• Timin> of diversification events 

• Geolo>ical context 

• Rates of phenotypic evolution 

• Diversification rates
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molecular time 
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MOEPLKEKLJMJEJE. Jurassic L. Jur. E. Cretaceous L. Cretaceous .coiM.ilOenecoE.laP.J.MImage adapted from Friedmann et al. (2013)

https://royalsocietypublishing.org/doi/full/10.1098/rspb.2013.1733


Phylo>enetics aims to reconstruct the phylo>eny of individual samples based on 
molecular or morpholo>ical character data 

A phylo>eny captures part of evolutionary history that is otherwise not directly 
observable 

Phylodynamics aims to quantify the processes that >ave rise to the tree,  
e.>., speciation, extinction 

Phylogenetics
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What do we mean by model?
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(the following is my take on things — intended to be useful but not definitive)



What is a statistical model? When is an equation a model?  

What is a mechanistic model?  

What is the difference between an al>orithm and a model?
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A statistical model is a type of model that includes a set of assumptions 
about the data->eneratin> process 

It should be possible to simulate data under the assumptions of the model  

If we’re lucky, we mi>ht also be able to estimate parameters under the 
model*. This isn’t always possible because some models are too complex
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*A fancy way of saying this is, ”we can perform inference under the model”

https://en.wikipedia.org/wiki/Statistical_model


An example
The solid black line is a linear 
re>ression line 

We can estimate the parameters of 
the re>ression model 

y = Xβ + ε 

It’s also strai>htforward to simulate 
data under this model

16
Image source Harmon (2019) 

https://lukejharmon.github.io/pcm/chapter5_mvbm/


The boundary-crosser and three-
timer metrics are not models 

They provide a clever way of 
approximatin> ori>ination and 
extinction rates (and often perform 
well), but don’t describe the data 
>eneratin> processes

Non model-based approaches are still useful
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Foote (2000)



Mechanistic or process based models are based on ‘physical principles’. They 
describe the data as a function of a set of parameters that have a tan>ible 
biolo>ical or >eolo>ical meanin> 

A re>ression model is not mechanistic − it describes the relationship between 
x and y but the parameters don’t have a biolo>ical meanin> 

Many models used in phylo>enetics are mechanistic, e.>., they mi>ht include 
parameters for ori>ination, extinction, or samplin>
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https://en.wikipedia.org/wiki/Statistical_model


An al>orithm is a precise rule (or set of rules) specifyin> how to solve some 
problem 

Used in phylo>enetics for all sorts of tasks, e.>., traversin> tree space

19

https://www.cs.cmu.edu/~15110-n15/lectures/unit03-Algorithm-1.pdf


Mini reading group

20



Next

• >raphical models 

• RevBayes 

• Bayesian inference 

• MCMC

21



How do we find the ‘best’ tree?
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It depends how you measure ‘best’
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Method Criterion (tree score)

Maximum parsimony Minimum number of chan>es

Maximum likelihood
Likelihood score (probability), optimised over branch len>ths 
and model parameters

Bayesian inference
Posterior probability, inte>ratin> over branch len>ths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-buildin> but they are the most widely used



RevBayes
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Phylogenetic inference — the old way
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Empirical 
researchers

Model 
developers

ACAC...
TCAC...
ACAG...

 λ μ
ρ

What we mi>ht call a 
“black box” approach



Phylogenetic inference — a better way?
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Empirical 
researchers

Model 
developers

ACAC...
TCAC...
ACAG...

 λ μ
ρ

The >oal is to brin> 
researchers with different 
expertise to>ether, 
increase transparency, and 
do better research
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Graphical models
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Graphical models

Provide tools for visually and 
computationally representin> 
complex, parameter-rich models 

Depict the conditional dependence 
structure of parameters and other 
random variables
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Types of variables (nodes)

30

a. fixed value variables  

b. random variables that depend on 
other variables 

c. variables determined by a function 
applied other variables (transformations) 

d. observed stochastic variables (data)
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a. fixed value variables  

b. random variables that depend on 
other variables 

c. variables determined by a function 
applied other variables (transformations) 

d. observed stochastic variables (data) 

e. repetition over multiple variables  
(equivalent to a loop)



Specifying graphical models using the Rev syntax

32
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l[i] ⇠ dnExp(r)

}



Exercise
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https://phylogenetics-fau.netlify.app/exercise-02


Bayesian tree inference

39



Bayes’ theorem

40

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )



Bayes’ theorem
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Likelihood

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

The probability of the 
data given the model 
assumptions and 
parameter values



Bayes’ theorem
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Priors

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

This represents our 
prior knowledge of 
the model 
parameters



Bayes’ theorem
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Marginal probability

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )
The probability of the 
data, given all possible 
parameter values. Can 
be thought of as a 
normalising constant



Bayes’ theorem
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posterior

Pr( model | data )  =

Pr( data | model ) Pr( model )

Pr( data )

Reflects our combined 
knowledge based on the 
likelihood and the priors



How do we find the ‘best’ tree?
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It depends how you measure ‘best’
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Method Criterion (tree score)

Maximum parsimony Minimum number of chan>es

Maximum likelihood
Likelihood score (probability), optimised over branch len>ths 
and model parameters

Bayesian inference
Posterior probability, inte>ratin> over branch len>ths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-buildin> but they are the most widely used



without considering time
Components used to infer trees

47

data 
sequences or 

characters

tree 
topology and 

branch lengths

substitution 
model

0101...
1101...
0100...

0
1



Bayesian tree inference
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P( | )P( | )0101...
1101...
0100...

0101...
1101...
0100...

0
10

1

P( )0101...
1101...
0100...

=
P( )0

1

likelihood priors

marginal probability

posterior



Likelihood and substitution models
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Molecular evolution
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Deoxyribonucleic acid (DNA)
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Purines 

• Adenine (A) 

• Guanine (G) 

Pyrimidines 

• Cytosine (C) 

• Thymine (T)*

Image source Decoding Genomes Stadler et al. (2024) *Replaced by uracil (U) in RNA

https://www.research-collection.ethz.ch/handle/20.500.11850/664449


The central dogma of biology

52Image source Decoding Genomes Stadler et al. (2024) 

DNA → RNA → protein 

Each >roup of 3 successive 
nucleotides in a >ene is a 
codon that encodes an 
amino acid (or terminate 
translation)

https://www.research-collection.ethz.ch/handle/20.500.11850/664449


The universal genetic code
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43 = 64 combinations 

3 terminate translation 

21 amino acids

Image source Decoding Genomes Stadler et al. (2024) 

https://www.research-collection.ethz.ch/handle/20.500.11850/664449


Variation in >enotypes (and in phenotypes) is due to errors that arise durin> 
DNA replication 

Individuals of the same species have identical characters at most positions in 
their >enome (only 0.1% vary amon> humans) 

Most mutations are repaired but can persist across >enerations 

Mutations that spread throu>hout a population and become ‘fixed’ called  
substitutions

Mutation vs. substitution

54



DNA sequencing

Multiple sequence ali>nment 
software establishes homolo>y 
across sites from different 
species

55Duchêne (2021) Phylogenomics Primer

https://www.sciencedirect.com/science/article/pii/S0960982221010290


Multiple sequence alignment

56



57

#NEXUS 
 
[Cytochrome oxidase B genes - bears] 
[Data source: https://revbayes.github.io/tutorials/dating/] 

BEGIN DATA; 
 
DIMENSIONS  NTAX=10 NCHAR=1000; 
    FORMAT DATATYPE = DNA MISSING=? GAP=- ; 

MATRIX 
 
Ailuropoda_melanoleuca     ATGATCAACATCCGAAAAACTCATCCATTAGTTAAAATTATCAACAACTCATTCATTGACCT... 
Arctodus_simus             ATGACCAACATCCGAAAGACTCACCCACTGGCCAAAATTATCAATAACTCATTCATCGACCT... 
Helarctos_malayanus        ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATTAACAACTCACTTATTGACCT... 
Melursus_ursinus           ATGACCAACATCCGAAAAACCCACCCACTAGCTAAAATCATTAACAACTCACTCATTGACCT... 
Ursus_americanus           ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCACTTATTGATCT... 
Ursus_arctos               ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGACCT... 
Ursus_maritimus            ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGATCT... 
Ursus_thibetanus           ATGACCAACATCCGAAAAACCCATCCATTAGCCAAAATCATCAACAACTCACTCATTGATCT... 
Ursus_spelaeus             ATGACCAACATCCGAAAAACCCATCCACTAGCTAAAATCATCAACAACTCATTCATTGACCT... 
Tremarctos_ornatus         ATGACCAACATCCGAAAAACTCACCCACTAGCTAAAATCATCAACAACTCATTCATCGACCT... 

; 
 
END;



How probable is our data, given my tree?

The data are the observed states at the tips

58

A C A

To apply a model based approach 
we need to be able to compute 
the probability of our sequence 
ali>nment (or character matrix)
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A C A

A→C

A C A

A→T
T→C

A C A
A→C

A C A

C→A

C→A

A C A

C→T
T→G
G→AC→A

A C A

There are infinitely many histories 
leading to the same observed data

Some possible character histories...



How probable is our data, given my tree? 

The data are the observed states at the tips
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A C A
To compute P, we need:  
• A model of sequence (or character) 

evolution 
• A way of calculatin> the probability 

for >iven a phylo>eny (tree topolo>y 
+ branch len>ths)Note branch lengths = rate x time



Substitution models
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Also known as substitution / site / character models 

They allow us to compute the probability of chan>in> from one state to 
another over branch len>th v

Models of molecular sequence evolution

62



Pij (v) — transition probabilities

Computing the probability of the observed data

63

G AG A

v1

v2

v3 v4
A

A

Just suppose for now 
we know the ancestral 
states at internal nodes

P =

PAA (v1) x PAA (v2) x PAG (v3) x PAG (v1)



Rate matrix
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Q =

A

G

C

T

A G CT

λ λ λ -3λ

-3λ λ λ λ

λ -3λ λ λ

λ λ -3λ λ

In this model, we 
only have one 
parameter, 
substitution rate 
parameter λ 

This is the Jukes-
Cantor (1969) or 
JC69 model



Nucleotide substitutions (events) occur at a constant rate
Continuous time Markov chain

65

0 Time

Start observing 
the process here

Time until the 
first event

Time until the 
second event

Time until the 
third event



The waiting times are 
exponentially distributed 
random variables 
 
We can use this to calculate 
the probability of change 
over time (or branch length v) 

The longer the interval of 
time, the more likely we  
are to observe change

The poisson process

66

Time
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Exercise
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Jukes-Cantor model transition probability applet

Written by Paul Lewis

https://molevolworkshop.github.io/applets/jc-transition-probabilities/


Felsenstein’s pruning algorithm

68

The following slides are adapted from John Huelsenbeck (c/o Sebastian Höhna)



Pij (v) — transition probabilities 
          πi — stationary frequencies

Computing the probability of the observed data
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G AG A

v1

v2

v3 v4
A

A

Just suppose for now 
we know the ancestral 
states at internal nodes

P =

πA  x PAA (v1) x PAA (v2) x PAG (v3) x PAG (v1)
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G AG

A

APr
G AG

C

A+ Pr
G AG

G

A+ Pr
G AG

T

A+ Pr

G AG

A

CPr
G AG

C

C+ Pr
G AG

G

C+ Pr
G AG

T

C+ Pr

G AG

A

GPr
G AG

C

G+ Pr
G AG

G

G+ Pr
G AG

T

G+ Pr

G AG

A

TPr
G AG

C

T+ Pr
G AG

G
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T

T+ Pr
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+

+



G G A

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.



G G A
10 0 0 10 0 0 01 0 0



G G A
10 0 0 10 0 0 01 0 0

????

????



⌫L ⌫R

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A



`Site = ⇡A ⇥ `Root
A + ⇡C ⇥ `Root

C + ⇡G ⇥ `Root
G + ⇡T ⇥ `Root

T



`Site = ⇡A ⇥ `Root
A + ⇡C ⇥ `Root

C + ⇡G ⇥ `Root
G + ⇡T ⇥ `Root

T
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`Site = ⇡A ⇥ `Root
A + ⇡C ⇥ `Root

C + ⇡G ⇥ `Root
G + ⇡T ⇥ `Root

T

`i =

0

@
X

j

pij(⌫L) `L
j

1

A⇥

0

@
X

j

pij(⌫R) `R
j

1

A

Another nice description of the pruning algorithm: Harmon (2019) Phylogenetic Comparative Methods, Chapter 8

https://lukejharmon.github.io/pcm/chapter8_fitdiscrete/


Other substitution models
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79Posada & Crandall (1998)



The JC69 model assumes equal transition rates and equal base frequencies 

Base frequencies are the proportion of each nucleotide in the dataset 

If a >iven nucleotide appears in our dataset at a low frequency, we are less 
likely to observe a transition to that state

Base frequencies

80



Allows for unequal transition rates 
(μ) and unequal base frequencies (π) 

Note the rates are symmetric − e.>., 
the rate of chan>e between A and T, 
is the same in both directions − but 
the frequency of each character state 
also affects the probability of chan>e

The general time reversible model

81Tavaré (1986)



The JC versus GTR models

82

A G

C T

JC

A G

C T

GTR



Branch lengths
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Branch lengths = 
number of 
expected number 
of substitutions 
per site 

Branch len>ths are a product 
of rate and time 

Without temporal information 
we can only measure relative 
>enetic distance



Maximum likelihood
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How do we find the ‘best’ tree?
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It depends how you measure ‘best’

86

Method Criterion (tree score)

Maximum parsimony Minimum number of chan>es

Maximum likelihood
Likelihood score (probability), optimised over branch len>ths 
and model parameters

Bayesian inference
Posterior probability, inte>ratin> over branch len>ths and 
model parameters 

Both maximum likelihood and Bayesian inference are model-based approaches 
 
Note these are not the only approaches to tree-buildin> but they are the most widely used



Bayesian tree inference

87

P( | )P( | )0101...
1101...
0100...

0101...
1101...
0100...

0
10

1

P( )0101...
1101...
0100...

=
P( )0

1

likelihood priors

marginal probability

posterior
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

prior on the tree 
topology 
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

prior on the 
branch lengths
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

we can combine 
the topology and 
branch lengths 
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

Substitution 
model

0
1
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )
Observed 

data

0101...
1101...
0100...
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )
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Introduction to MCMC
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In phylo>enetics, probabilities are not normally discrete (i.e., represented by a 
sin>le value)  

We’re often dealin> with a lot of uncertainty and typically work with probability 
densities 

Probability densities introduce some complexity

Probabilities vs probability densities
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The x-axis represents the value of our 
parameter λ 

The y-axis does have a value but it is not 
so easily interpretable 

The distribution hei>ht reflects the relative 
probability of a >iven ran>e of values

Probabilities vs probability densities
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λ

Pr
 d

en
si

ty

λ is drawn from an 
exponential distribution 
with mean δ



Bayesian tree inference
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P( | )P( | )0101...
1101...
0100...

0101...
1101...
0100...

0
10

1

P( )0101...
1101...
0100...

=
P( )0

1

likelihood priors

marginal probability

posterior



Bayesian tree inference
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P( )d
P( | )0101...

1101...
0100...

P( | )0101...
1101...
0100...

0
1

0
1

P( )
= ∫ 0

1

0
1

0
1

this part is incredibly 
difficult to calculate!



A >roup of al>orithms for approximatin> the posterior distribution (also known as 
samplers) 

Markov chain means the pro>ress of the al>orithm doesn’t depend on its past 

Monte Carlo (named for the casino in Monaco) methods estimate a distribution 
via random samplin> 

We use this al>orithm to visit different re>ions the parameter space. The number 
of times a >iven re>ion is visited will be in proportion to its posterior probability

What is Markov chain Monte Carlo (MCMC)?
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The aim is to produce a 
histo>ram that provides a >ood 
approximation of the posterior

What is Markov chain Monte Carlo (MCMC)?
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prior

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

posterior
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The Metropolis-Hastings algorithm

Flowchart

Accept any
changes that

increase
the posterior

Occasionally
accept

changes that
decrease the

posterior

Pseudocode

Generate
starting values

Evaluate
parameter values

Log parameter
values

Perturb parameter
values

initialize starting values;

for i in mcmc steps

do

propose new parameter values;

calculate the Hastings ratio R;

if( R > 1 )

accept the new values;

else

accept the new values with Pr = R;

store the values with frequency j;

done



MCMC robot's rules
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Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills
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Uphill steps are always 
accepted because R > 1

Slightly downhill steps are usually 
accepted because R is near 1

Drastic “off the cliff” downhill 
steps are almost never accepted 

because R is near 0

6

8

4

2

0

10

The robot 
takes a step if 
a  Uniform(0,1) 

random 
deviate  R

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 0.2 m
R = 0.2/6.2 = 0.03

Metropolis et al. 1953. Equation of state calculations by fast 
computing machines. J. Chem. Physics 21(6):1087-1092.
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When calculating the ratio (R) of posterior densities, the marginal 
probability of the data cancels.

Posterior
odds

Likelihood
ratio

Prior
odds

Apply Bayes' rule to 
both top and bottom

p(θ* |D)
p(θ |D) =

p(D |θ*) p(θ*)
p(D)

p(D |θ) p(θ)
p(D)

= p(D |θ*) p(θ*)
p(D |θ) p(θ)



Hastings ratio
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New
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the prior odds ratio
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R =

The marginal
probability of the
data cancels out

New
parameter
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All we're left to
calculate is the
likelihood ratio and
the prior odds ratio
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1101...
0100... P( *)

P( | *)0101...
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=
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Proposals
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"good" proposal 
distribution

target
distribution

The target is usually the posterior distribution

The proposal distribution 
is used by the robot to 
choose the next spot to 
step, and is separate from 
the target distribution.



Tracer is an 
amazing program 
for exploring 
MCMC output

Summarising the posterior
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Tracer is an 
amazing program 
for exploring 
MCMC output

Summarising the posterior
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Summarising trees is 
much more challenging 
 
Presenting a single 
summary tree can be 
misleading

Summarising the posterior
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Maximum clade credibility (MCC) tree — the tree in the posterior sample that 
has the hi>hest posterior probability (i.e., clade support) across all nodes 

The 95% hi>hest posterior density (HPD) — the shortest interval that contains 
95% of the posterior probability. The Bayesian equivalent of the 95% 
confidence interval 

Mar>inal posterior density — the probability of a parameter re>ardless of the 
value of the others, represented by the histo>ram

Summarising the posterior
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Exercise
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https://phylogenetics-fau.netlify.app/exercise-04

