Bayesian Phylogenetics Analytical Paleobiology

Rachel Warnock 13.08.24

Objectives for today and tomorrow

Intro to Bayesian phylogenetics in paleobiology

- Tree building
- Substitution models
- Dating trees
- Clock models

- Tree models
- Diversification rates
- Morphological models

Please ask questions!

Today's objectives

- Intro to RevBayes
- Bayesian tree inference
- Morphological models

Time tree from Darwin's Origin of Species

What is phylogenetics?

species

- languages
- cells
- viruses
- species
- populations

Data

- DNA
- morphology
- words

In this course we mainly focus on trees that include one representative per

Scots poem - also the BEAST2 logo!

Research topics in phylogenetics

Applications

Trees in paleobiology

What can we learn from trees?

How are our favourite species related?

Does the phylogeny support the taxonomy?

What can we learn from trees?

Evolutionary relationships

10

What can we learn from trees?

- Evolutionary relationships
- Timing of diversification events
- Geological context
- Rates of phenotypic evolution
- Diversification rates

Image adapted from *Friedmann et al.* (2013)

Phylogenetics

molecular or morphological character data

observable

Phylodynamics aims to quantify the processes that gave rise to the tree, e.g., speciation, extinction

- Phylogenetics aims to reconstruct the phylogeny of individual samples based on
- A phylogeny captures part of evolutionary history that is otherwise not directly

What do we mean by model?

(the following is my take on things – intended to be useful but not definitive)

13

What is a statistical model? When is an equation a model? What is a mechanistic model? What is the difference between an algorithm and a model?

14

A <u>statistical model</u> is a type of model that includes a set of assumptions about the data-generating process

It should be possible to simulate data under the assumptions of the model

If we're lucky, we might *also* be able to estimate parameters under the model*. This isn't always possible because some models are too complex

*A fancy way of saying this is, "we can perform inference under the model"

An example

The solid black line is a linear regression line

We can estimate the parameters of the regression model

 $y = X\beta + \varepsilon$

It's also straightforward to simulate data under this model

Image source Harmon (2019)

Non model-based approaches are still useful

Four fundamental classes of taxa

Time interval of interest

Foote (2000)

The boundary-crosser and threetimer metrics are *not* models

They provide a clever way of approximating origination and extinction rates (and often perform well), but don't describe the data generating processes

<u>Mechanistic or process based models</u> are based on 'physical principles'. They describe the data as a function of a set of parameters that have a tangible biological or geological meaning

A regression model is not mechanistic – it describes the relationship between x and y but the parameters don't have a biological meaning

Many models used in phylogenetics are mechanistic, e.g., they might include parameters for origination, extinction, or sampling

18

An <u>algorithm</u> is a precise rule (or set of rules) specifying how to solve some problem

Used in phylogenetics for all sorts of tasks, e.g., traversing tree space

Mini reading group

Next

- graphical models
- RevBayes
- Bayesian inference
- MCMC

How do we find the 'best' tree?

It depends how you measure 'best'

Method	Criterion (tree s		
Maximum parsimony	Minimum num		
Maximum likelihood	Likelihood scor and model para		
Bayesian inference	Posterior proba model paramet		

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used

score)

ber of changes

re (probability), optimised over branch lengths

ameters

ability, integrating over branch lengths and ters

RevBayes

Phylogenetic inference — the old way

What we might call a "black box" approach

Phylogenetic inference — a better way?

The goal is to bring researchers with different expertise together, increase transparency, and do better research

About

RevBayes provides an interactive environment for statistical computation in phylogenetics. It is primarily intended for modeling, simulation, and Bayesian inference in evolutionary biology, particularly phylogenetics. However, the environment is quite general and can be useful for many complex modeling tasks.

RevBayes uses its own language, Rev, which is a probabilistic programming language like JAGS, STAN, Edward, PyMC3, and related software. However, phylogenetic models require inference machinery and distributions that are unavailable in these other tools.

The Rev language is similar to the language used in R. Like the R language, Rev is designed to support interactive analysis. It supports both functional and procedural programming models, and makes a clear distinction between the two. Rev is also more strongly typed than R.

RevBayes is a collaboratively developed software project.

GitHub | License | Citation | Users Forum

vbayes.gi	thub.io	↓) (A)	Û	+	C
rkshops	Jobs	Developer			

Bayesian phylogenetic inference using probabilistic graphical models and an interpreted

Graphical models

Graphical models

Provide tools for visually and computationally representing complex, parameter-rich models

Depict the conditional dependence structure of parameters and other random variables

Types of variables (nodes)

a. fixed value variables

b. random variables that depend on other variables

c. variables determined by a function applied other variables (transformations)

d. observed stochastic variables (data)

a. fixed value variables

b. random variables that depend on other variables

c. variables determined by a function applied other variables (transformations)

d. observed stochastic variables (data)

e. repetition over multiple variables (equivalent to a loop)

Specifying graphical models using the Rev syntax

 Operator
 Variable

 <-</td>
 constant variable

 ~
 stochastic variable

 :=
 deterministic variable

 node.clamp(data)
 clamped variable

 =
 inference (*i.e.*, non-model) variable

 for(i in 1:N){...}
 plate

a)

constant node
r <- 10</pre>

constant node
r <- 10</pre>

stochastic node l \sim dnExp(r)

constant node
r <- 10</pre>

stochastic node
1 ~ dnExp(r)

```
# stochastic node (observed)
1.clamp(0.1)
```



```
# constant node
r <- 10</pre>
```

stochastic node 1 \sim dnExp(r)

```
# stochastic node (observed)
1.clamp(0.1)
```

deterministic node
1 := exp(r)


```
# constant node
r <- 10</pre>
```

```
# stochastic node 1 \sim dnExp(r)
```

```
# stochastic node (observed)
1.clamp(0.1)
```

```
# deterministic node
l := exp(r)
```


Bayesian tree inference

Pr(data | model) Pr(model)

Pr(model | data) =

Likelihood

Pr(model | data) =

The probability of the data given the model assumptions and parameter values

Pr(data | model) Pr(model)

Pr(data | model) Pr(model)

Pr(model | data) =

This represents our prior knowledge of the model parameters

Priors

Pr(data | model) Pr(model)

Pr(model | data) =

Pr(data)

Marginal probability

The probability of the data, given all possible parameter values. Can be thought of as a normalising constant

Reflects our combined knowledge based on the likelihood and the priors

posterior

Pr(data | model) Pr(model)

Pr(model | data) =

How do we find the 'best' tree?

It depends how you measure 'best'

Method	Criterion (tree s
Maximum parsimony	Minimum num
Maximum likelihood	Likelihood scor and model para
Bayesian inference	Posterior proba model paramet

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used

score)

ber of changes

re (probability), optimised over branch lengths

ameters

ability, integrating over branch lengths and ters

Components used to infer trees without considering time

0101... 1101... 0100...

data sequences or characters topology and branch lengths

substitution model

Bayesian tree inference

posterior

Likelihood and substitution models

Molecular evolution

Deoxyribonucleic acid (DNA)

Image source Decoding Genomes Stadler et al. (2024)

Purines

- Adenine (A)
- Guanine (G)

Pyrimidines

- Cytosine (C)
- Thymine (T)*

*Replaced by uracil (U) in RNA

The central dogma of biology

Image source Decoding Genomes Stadler et al. (2024)

DNA replication

$DNA \rightarrow RNA \rightarrow protein$

Each group of 3 successive nucleotides in a gene is a codon that encodes an amino acid (or terminate translation)

The universal genetic code

Image source Decoding Genomes Stadler et al. (2024)

nino acid	3-lattar	1_lattar
	code	code
anine	Ala	А
ginine	Arg	R
sparagine	Asn	Ν
spartic acid	Asp	D
<i>y</i> steine	Cys	С
utamic acid	Glu	Е
utamine	Gln	Q
ycine	Gly	G
stidine	His	Н
oleucine	Ile	I
eucine	Leu	L
rsine	Lys	Κ
ethionine	Met	Μ
nenylalanine	Phe	F
oline	Pro	Р
erine	Ser	S
reonine	Thr	Т
yptophan	Trp	W
rosine	Tyr	Y
line	Val	V

4³ = 64 combinations

3 terminate translation

21 amino acids

Mutation vs. substitution

DNA replication

their genome (only 0.1% vary among humans)

Most mutations are repaired but can persist across generations

substitutions

Variation in genotypes (and in phenotypes) is due to errors that arise during

- Individuals of the same species have identical characters at most positions in
- Mutations that spread throughout a population and become 'fixed' called

DNA sequencing

Multiple sequence alignment software establishes homology across sites from different species

Duchêne (2021) Phylogenomics Primer

Multiple sequence alignment

#NEXUS

[Cytochrome oxidase B genes - bears]
[Data source: https://revbayes.github.io/tutorials/dating/]

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=1000; FORMAT DATATYPE = DNA MISSING=? GAP=-;

MATRIX

Ailuropoda_melanoleuca Arctodus_simus Helarctos_malayanus Melursus_ursinus Ursus_americanus Ursus_arctos Ursus_maritimus Ursus_thibetanus Ursus_spelaeus Tremarctos ornatus ;

The data are the observed states at the tips How probable is our data, given my tree?

To apply a model based approach we need to be able to compute the probability of our sequence alignment (or character matrix)

The data are the observed states at the tips How probable is our data, given my tree?

To compute *P*, we need:

- A model of sequence (or character) evolution
- A way of calculating the probability for given a phylogeny (tree topology + branch lengths)

60

Substitution models

Models of molecular sequence evolution

Also known as substitution / site / character models

They allow us to compute the probability of changing from one state to another over branch length v

Computing the probability of the observed data

$P_{AA}(v_1) \times P_{AA}(v_2) \times P_{AG}(v_3) \times P_{AG}(v_1)$

Just suppose for now we know the ancestral states at internal nodes

$P_{ij}(v)$ – transition probabilities

Rate matrix

C λ λ λ -3λ In this model, we only have one parameter, substitution rate parameter λ

This is the Jukes-Cantor (1969) or JC69 model

Continuous time Markov chain Nucleotide substitutions (events) occur at a constant rate

Time until the third event

The poisson process

Time

The waiting times are exponentially distributed random variables

We can use this to calculate the probability of change over time (or branch length v)

The longer the interval of time, the more likely we are to observe change

Jukes-Cantor model transition probability applet

Written by Paul Lewis

Felsenstein's pruning algorithm

The following slides are adapted from John Huelsenbeck (c/o Sebastian Höhna)

Computing the probability of the observed data $P = \begin{bmatrix} G & G & A \\ V_3 & V_4 & \\ A & V_2 \\ V_1 & V_2 \end{bmatrix}$ Just suppose for now we know the ancestral states at internal nodes

$\pi_A \times P_{AA}(v_1) \times P_{AA}(v_2) \times P_{AG}(v_3) \times P_{AG}(v_1)$

 $P_{ij}(v)$ – transition probabilities π_i – stationary frequencies

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.

 $\ell_i = \left(\sum_j p_{ij}(\nu_L) \,\ell_j^L\right) \times \left(\sum_j p_{ij}(\nu_R) \,\ell_j^R\right)$

 $\ell_{\text{Site}} = \pi_A \times \ell_A^{\text{Root}} + \pi_C \times \ell_C^{\text{Root}} + \pi_G \times \ell_G^{\text{Root}} + \pi_T \times \ell_T^{\text{Root}}$

 $\ell_{\text{Site}} = \pi_A \times \ell_A^{\text{Root}} + \pi_C \times \ell_C^{\text{Root}} + \pi_G \times \ell_G^{\text{Root}} + \pi_T \times \ell_T^{\text{Root}}$

 $\ell_i = \left(\sum_j p_{ij}(\nu_L) \,\ell_j^L\right) \times \left(\sum_j p_{ij}(\nu_R) \,\ell_j^R\right)$

$\ell_{\text{Site}} = \pi_A \times \ell_A^{\text{Root}} + \pi_C \times \ell_C^{\text{Root}} + \pi_G \times \ell_G^{\text{Root}} + \pi_T \times \ell_T^{\text{Root}}$

Another nice description of the pruning algorithm: *Harmon* (2019) Phylogenetic Comparative Methods, <u>Chapter 8</u>

Other substitution models

Posada & Crandall (1998)

Base frequencies

Base frequencies are the proportion of each nucleotide in the dataset

likely to observe a transition to that state

- The JC69 model assumes equal transition rates and equal base frequencies
- If a given nucleotide appears in our dataset at a low frequency, we are less

The general time reversible model

Tavaré (1986)

Allows for unequal transition rates (μ) and unequal base frequencies (π)

Note the rates are symmetric – e.g., the rate of change between A and T, is the same in both directions - but the frequency of each character state also affects the probability of change

81

The JC versus GTR models

Branch lengths

per site

Branch lengths are a product of rate and time

Without temporal information we can only measure relative genetic distance

Maximum likelihood

How do we find the 'best' tree?

It depends how you measure 'best'

Method	Criterion (tree s
Maximum parsimony	Minimum num
Maximum likelihood	Likelihood scor
	and model para
Bayesian inference	Posterior proba
	model paramet

Both maximum likelihood and Bayesian inference are model-based approaches

Note these are not the only approaches to tree-building but they are the most widely used

score)

ber of changes

re (probability), optimised over branch lengths ameters ability, integrating over branch lengths and

ers

Bayesian tree inference

posterior

prior on the tree topology

prior on the branch lengths

we can combine the topology and branch lengths

Substitution model

Observed data 0101... 1101... 0100...

\$

```
for (i in 1:n_branches) {
            bl[i] ~ dnExponential(10.0)
}
topology ~ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)
```

```
Q <- fnJC(4)
```

```
seq \sim dnPhyloCTMC( tree=psi, Q=Q, type="DNA" ) seq.clamp( data )
```



```
for (i in 1:n_branches) {
        bl[i] \sim dnExponential(10.0)
}
topology \sim dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)
```

```
alpha1 <- v(1,1,1,1,1,1)
alpha2 <- v(1,1,1,1)
{\tt er} \sim {\tt dnDirichlet}({\tt alpha1})
pi \sim dnDirichlet( alpha2 )
Q := fnGTR(er, pi)
```


Introduction to MCMC

Probabilities vs probability densities

single value)

densities

Probability densities introduce some complexity

In phylogenetics, probabilities are not normally discrete (i.e., represented by a

We're often dealing with a lot of uncertainty and typically work with probability

97

exponential distribution with mean δ

The x-axis represents the value of our parameter λ

The y-axis does have a value but it is not so easily interpretable

The distribution height reflects the relative probability of a given range of values

Bayesian tree inference

posterior

Bayesian tree inference

$\mathsf{P}\left(\begin{smallmatrix} 0101...\\1101...\\0100...\end{smallmatrix}\right) \mathsf{P}\left(\begin{smallmatrix} \mathbf{P} \\ \mathbf{P} \\$

this part is incredibly difficult to calculate!

What is Markov chain Monte Carlo (MCMC)?

samplers)

via random sampling

A group of algorithms for approximating the posterior distribution (also known as

- Markov chain means the progress of the algorithm doesn't depend on its past
- Monte Carlo (named for the casino in Monaco) methods estimate a distribution

We use this algorithm to visit different regions the parameter space. The number of times a given region is visited will be in proportion to its posterior probability

101

What is Markov chain Monte Carlo (MCMC)?

The aim is to produce a histogram that provides a good approximation of the posterior

102

The Metropolis-Hastings algorithm Flowchart

Pseudocode

```
initialize starting values;
```

for i in mcmc steps

do

propose new parameter values;

calculate the Hastings ratio R;

if(R > 1)

accept the new values;

else

accept the new values with Pr = R;

store the values with frequency j;

done

MCMC robot's rules

Slightly downhill steps are usually accepted

Uphill steps are always accepted

Copyright © 2018 Paul O. Lewis

computing machines. J. Chem. Physics 21(6):1087-1092.

When calculating the ratio (R) of posterior densities, the marginal probability of the data cancels.

 $p(D \mid \theta^*) p(\theta^*)$ $p(D \mid \theta^*) p(\theta^*)$ $|D\rangle$ $p(D \mid \theta) p(\theta)$ $p(D \mid \theta) p(\theta)$ $p(\theta \mid D)$ Likelihood Prior Posterior Apply Bayes' rule to odds both top and bottom odds ratio

Copyright © 2018 Paul O. Lewis

Hastings ratio

new parameter values

Proposals

"good" proposal distribution

The proposal distribution is used by the robot to choose the next spot to step, and is separate from the target distribution.

Si cont

The target is usually the posterior distribution

Copyright © 2018 Paul O. Lewis

Tracer is an amazing program for exploring MCMC output

Trace Files:		
Trace File S	States	Burn
primate-mtDNA	10000000	100
+ -		
	<u>^</u>	
Traces:		
Statistic	Mean	ESS
posterior	-5515	23
likelihood	-5441	234
prior	-73.169	13
treeLikelihood.1stpos	-1383	318
treeLikelihood.2ndpo	s -952.37	288
treeLikelihood.3rdpo	s -2148	16
treeLikelihood.noncod	d957.267	173
TreeHeight	83.827	140

posterior	-5515	2387
likelihood	-5441	2349
prior	-73.169	1379
treeLikelihood.1stpos	-1383	3189
treeLikelihood.2ndpos	-952.37	2885
treeLikelihood.3rdpos	-2148	1687
treeLikelihood.noncod	-957.267	1731
TreeHeight	83.827	1409
mutationRate.1stpos	0.45	852
mutationRate.2ndpos	0.182	714
mutationRate.3rdpos	2.949	646
mutationRate.noncoding	0.346	1344
gammaShape.1stpos	0.496	889
gammaShape.2ndpos	0.575	911
gammaShape.3rdpos	3.022	726
gammaShape.noncodi	0.244	1006
kappa.1stpos	6.235	719
kappa.2ndpos	8.5	1359
kappa.3rdpos	28.777	365
kappa.noncoding	13.478	875
CalibratedYuleModel	-47.285	1755
birthRateY	2.561E-2	3805
logP(mrca(human-chi	-0.731	9001
mrcatime(human-chi	5.949	8655
clockRate	1.161E-2	1836

Type:	(R)eal	(l)nt	(C)at

Tracer is an amazing program for exploring MCMC output

Trace Files:		
Trace File	States	Burn-Ir
tutorial_run1.log	200000	20000
+ -		
Traces:	î	
Statistic	Mean	ESS
posterior	-9115	22
likelihood	-8937	20
prior	-177.165	8
treeLikelihood	-8937	20
TreeHeight	9.704	7
clockRate	1.067E-2	10
freqParameter.1	0.263	13
freqParameter.2	0.249	35
freqParameter.3	0.239	19
freqParameter.4	0.25	24
rateAC	1	19
rateAG	0.91	23
rateAT	0.964	21
rateCG	0.975	13
rateGT	0.916	24
popSize	34.573	16
CoalescentConstant	-158.016	9

Type:	(R)eal	(l)nt	(C)at

А

Summarising trees is much more challenging

Presenting a single summary tree can be misleading

111

95% of the posterior probability. The Bayesian equivalent of the 95% confidence interval

value of the others, represented by the histogram

- Maximum clade credibility (MCC) tree the tree in the posterior sample that has the highest posterior probability (i.e., clade support) across all nodes
- The 95% highest posterior density (HPD) the shortest interval that contains

Marginal posterior density – the probability of a parameter regardless of the

112

