
Analyzing Outline Data
Ryan N. Felice

Loading Packages and Scripts

library(geomorph)
library(Momocs)
library(stringr)
library(mvMORPH)
library(MASS)

source('./utility_functions/MorphometricExtraction_Functions.r')
source('./utility_functions/MorphoFiles_Function.r')
source('./utility_functions/OutlineAnalysis_Functions.r')

Read data

We will just quickly load our data and run the EFA with 7 harmonics so we can move to our
analyses

Belemnite.Full<-readland.nts("./Data/Belemnite_SmoothedOutline.nts")
Specimens<-dimnames(Belemnite.Full)[[3]]
Belemnite.R1<-Belemnite.Full[,,str_detect(Specimens, "R1")]
Belemnite.R2<-Belemnite.Full[,,str_detect(Specimens, "R2")]
#make an empty list to hold our Fourier analysis results
EFA<-list()
#create a vector of specimen names which are the
Spec.Names<-strsplit(dimnames(Belemnite.R1)[[3]], split=".", fixed=TRUE)
for (i in 1:dim(Belemnite.R1)[3]) {
EFA[[i]]<-NEF(Belemnite.R1[,,i], Harmonics=7)
names(EFA)[i]<-Spec.Names[[i]][1]

}

1

For this dataset, we have some additional trait and specimen data that tells us more informa-
tion about each hook. Let’s load that in so we can use it for downstream analyses

Belemnite.Covariates<-read.table("./Data/Belemnite_Data.txt",
header = TRUE, sep="\t")

colnames(Belemnite.Covariates)<-c("Specimen", "Hook.name", "Hook.number",
"CrossSection.R1.mm", "CrossSection.R2.mm",
"Distance.to.mouth.mm")

Explore your data

We can do a PCA with harmonic data the same way we did the PCA with landmark data. We
just need to convert our data into matrix format where each row is an observation (a single
hook) and each column is a harmonic coefficient.

#make an empty matrix with the correct number of rows and columns
EFA.Mat<-matrix(NA, length(EFA), length(EFA[[1]][[1]])*4)
#add row and column names
colnames(EFA.Mat)<-c(paste(rep("A", length(EFA[[1]][[1]])),

1:length(EFA[[1]][[1]]), sep=""),
paste(rep("B", length(EFA[[1]][[1]])),

1:length(EFA[[1]][[1]]), sep=""),
paste(rep("C", length(EFA[[1]][[1]])),

1:length(EFA[[1]][[1]]), sep=""),
paste(rep("D", length(EFA[[1]][[1]])),

1:length(EFA[[1]][[1]]), sep=""))
rownames(EFA.Mat)<-names(EFA)

#use a for loop to fill each specimen into the matrix
for (i in 1:length(EFA)) {
Temp<-EFA[[i]]
EFA.Mat[i,]<-c(Temp[[1]], Temp[[2]], Temp[[3]], Temp[[4]])

}

Something really cool about PCA is that you can reconstruct the shapes at any point in the
“morphospace” by multiplying the mean shape by the PC scores. The easiest way to do this
is with the PCA function in the Momocs package

EFA.coe <- OutCoe(EFA.Mat, method = "efourier", norm = TRUE)
my_PCA <- Momocs::PCA(EFA.coe)
plot(my_PCA, morpho=TRUE)

2

PC1

P
C

2 PC1

P
C

2

64.4%

22
%

my_PCA

Eigenvalues

But in general you will have more power if you run and plot the PCA yourself in base R

#remove the coefficients that were used for normalization
EFA.Mat2<-EFA.Mat[,-which(colnames(EFA.Mat) %in% c("A1", "B1", "C1"))]
#Calculate PCA
PCA2<-princomp(EFA.Mat2)
#Calculate proportion of variance explained per axis
PoV<-(PCA2$sdev^2/sum(PCA2$sdev^2))*100
#Color-code by specimen
cols<-hcl.colors(n=length(unique(Belemnite.Covariates[,"Specimen"])),

palette="viridis", alpha=0.8)
Col.vec<-cols[Belemnite.Covariates[,"Specimen"]]
#Plot results
plot(PCA2$scores[,1], PCA2$scores[,2], type="p",

xlab=paste("PC 1 (", round(PoV[1], digits=0), "%)", sep=""),
ylab=paste("PC 2 (", round(PoV[2], digits=0), "%)", sep=""), pch=16,
cex=1.5, col=Col.vec, asp=1)

legend("topleft", pch=16, col=cols, legend=c("Individual 1",
"Individual 2",
"Individual 3"))

3

−0.4 −0.2 0.0 0.2 0.4

−
0.

10
0.

05
0.

20

PC 1 (63%)

P
C

 2
 (

21
%

)

Individual 1
Individual 2
Individual 3

#Calculate mean shape

meanshape<-apply(EFA.Mat[,], 2, mean)
#Extract eigenvalues

ev<-PCA2$loadings
#Calculate shape at the right extreme of the PCA morphospace
Mx1<-meanshape+max(PCA2$scores[,1])*
c(0, ev[1:6,1], 0, ev[7:12,1], 0, ev[13:18,1], ev[19:25,1])

#Note the insertion of 0 to compensate that we eliminated the 'A1', 'B1',
#and 'C1' components for the PCA calculation
#Reconstruct the shape
PC1Max<-iefourier(an=Mx1[1:7], bn=Mx1[8:14], cn=Mx1[15:21], dn=Mx1[22:28],

Harmonics=7, Points=70)
coo_plot(data.frame(PC1Max$x,PC1Max$y),

border="mediumblue",
lwd = 3,
main = "PC 1 Max")

4

−1.0 −0.5 0.0 0.5 1.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

^

PC 1 Max

As an exercise, try to plot the minimum shapes on PC axis 1 and the min and
max shapes on PC Axis 2

Hypothesis Testing

Ordination analysis such as PCA are very valuable for exploring your data and trying to
understand how variation in your data is structured. However, we normally have explicit a
priori hypotheses we want to test. This requires other approaches.

One useful tool is LDA (linear discriminant analysis, also called discriminant function analysis
or canonical variate analysis). One of the oldest forms of machine learning, we first build
a linear model (ordinary least squares regression in this case) and use that to predict group
identity. For example, our hooks come three individual animals. We could ask whether the
shape of an individual hook predicts which individual it has come from.

Let’s pretend that we don’t know what individual the first 3 specimens came from and try to
predict them

Specimen <- as.factor(Belemnite.Covariates[-c(1:3),"Specimen"])
names(Specimen) <- rownames(PCA2$scores)[-c(1:3)]

#combine shape data and specimen id data into a single list
knowns<-list(spec=Specimen, shape=EFA.Mat2[-c(1:3),])

5

unknowns <- EFA.Mat2[c(1:3),]

#calculate a regression
model <- mvols(shape~spec, data=knowns)

LDA.results <- mvgls.dfa(model)
LDA.eval <- predict(LDA.results)
#check misclassification rate:

#try to predict:
LDA.predict <- predict(LDA.results, newdata = unknowns)
LDA.predict$class

How could we improve this prediction without collecting more data? Try imple-
menting it!

Because these fossils are recovered as complete “articulated” specimens, we know which posi-
tion in the tentacle each hook comes from. Thus we can ask whether hook shape differs along
the length of the tentacle. To do this, we can use a regression to test whether distance to
mouth predicts shape.

In this case, we will use the Procrustes linear models (RRPP) as these are more appropriate
for high-dimensional data

hookdist <- Belemnite.Covariates$Distance.to.mouth.mm
names(hookdist) <- rownames(PCA2$scores)

missing_dat <- which(is.na(hookdist))
#combine shape data and specimen id data into a single list
regression.Data<-geomorph.data.frame(hookdist = hookdist[-missing_dat],

shape=EFA.Mat2[-missing_dat,])

#calculate a regression
model <- lm.rrpp(shape~hookdist, data=regression.Data, RRPP=TRUE)

pval<-summary(model)$table[1,"Pr(>F)"]
#Plot results

Use fitted values from the model to make prediction lines
plot1<-plot(model, type = "regression",

predictor = regression.Data$hookdist,

6

reg.type = "RegScore",
pch = 19, col = "green")

Now try doing some tests of your own using a different covariate!

7

	Loading Packages and Scripts
	Read data
	Explore your data
	Hypothesis Testing

