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Objectives

Lecture 
Potential issues with node dating (in brief) 
Dating with sampling through time (the fossilised birth-death process) 
A few notes about available software 

Tutorial 
Divergence dating under the fossilised birth-death process 
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Molecular (or morphological) characters are not 
independently informative about time
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branch lengths = genetic distance
v = rt
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Slow rate, long interval OR fast 
rate, short interval?
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Goal: to disentangle 
evolutionary rate and time. 
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The molecular clock hypothesis

6

Zuckerkandl & Pauling (1965) — Molecules as documents of evolutionary history.



If we have independent evidence of time, we can 
calibrate the substitution rate

Temporal evidence of 
divergence for one species 
pair let’s us calibrate the 
average rate of molecular 
evolution…
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If we have independent evidence of time, we can 
calibrate the substitution rate
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...and use this to 
extrapolate the divergence 
times for other species 
pairs.



The molecular clock: challenges
Many variables contribute to variation in the substitution rate.

9

Bromham et al. (2015)



The molecular clock: challenges
The molecular clock is not constant over time. 
• Rates vary across taxa / time / genes / sites within the same gene
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Bromham et al. (2015)



The molecular clock: challenges
The molecular clock is not constant over time. 
• Rates vary across taxa / time / genes / sites within the same gene
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• The clock is in fact violated for most species/genes/characters

SOURCES OF VARIATION

Tuesday, January 13, 2015

Variation in rate makes 
different genes useful for 
different timescales.
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Molecular evolution:

Morphological evolution:

Fossil preservation:
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1.

2.

3.

1. Fossil minimum 
2. Acquisition of apomorphy 
3. Most probable divergence time



The molecular clock: challenges
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The molecular clock is not constant over time. 
• Rates vary across taxa / time / genes / sites within the same gene 

Calibrations are rarely known precisely. 

→ we need a flexible statistical framework that deals well with uncertainty….



We use a Bayesian framework
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P( model | data ) =
P( data | model ) P( model )

P( data )

likelihood priors

marginal 
probability of 

the data

posterior



Bayesian divergence time estimation
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Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. 2020. Elements of Paleontology



Bayesian divergence time estimation
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Thorne, Kishino, Painter. 1998. MBE 
See also: Kishino, Thorne, Bruno. 2001. MBE

https://academic.oup.com/mbe/article/15/12/1647/963101
https://academic.oup.com/mbe/article/18/3/352/1073229
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tree modelclock modelsubstitution model

How likely are we to observe a change 
between character states? e.g., A → T
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tree modelclock modelsubstitution model

How have rates of evolution varied 
(or not) across the tree?



The strict molecular clock model

Assumptions: 
• The substitution rate is constant over time. 
• All lineages share the same rate.
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low high
branch length = substitution rate

Image source: Tracy Heath



Relaxed clock models
Assumptions: 
• Lineage-specific rates are independent  

(i.e., uncorrelated). 
• The rate assigned to each branch is drawn 

independently from the underlying 
distribution.
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low high
branch length = substitution rate

Image source: Tracy Heath



Graphical models: strict clock
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cδc

exponential

clock rate

RevBayes Tutorial — Getting Started

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over
a set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Partially reproduced
from Fig. 1 in Höhna et al. (2014).]

Figure 2: Graphical model representation of a simple lognormal model. A total of N observations of variable x
are observed and occupy a clamped node. This parameter is log-normally distributed with parameters µ and ‡ (log
mean and standard deviation, respectively). The parameter µ is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and ‡. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyperprior on
M with constant nodes for the shape – and rate —. The stochastic variable ‡ is exponentially distributed with fixed
value for the rate ⁄.

Rev: The RevBayes Language

In RevBayes models and analyses are specified using an interpreted language called Rev. Rev bears simi-
larities to the compiled language in WinBUGS and the interpreted R language. Setting up and executing
a statistical analysis in RevBayes requires the user to specify all of the parameters of their model and the
type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the practi-
tioner to build complex, hierarchical models and to check the current states of variables while building the
model. This will be very useful in the beginning. Later on you, when you run very complex analyses, you
may want to write Rev-scripts.

Di�erently to R and BUGS, Rev is a strongly but implicitly typed language. It is implicitly typed, and thus
similar to Python, because you do not need to provide the type of a variable (which you need to in languages

3



Graphical models: exponential relaxed clock
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RevBayes Tutorial — Getting Started

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over
a set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Partially reproduced
from Fig. 1 in Höhna et al. (2014).]

Figure 2: Graphical model representation of a simple lognormal model. A total of N observations of variable x
are observed and occupy a clamped node. This parameter is log-normally distributed with parameters µ and ‡ (log
mean and standard deviation, respectively). The parameter µ is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and ‡. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyperprior on
M with constant nodes for the shape – and rate —. The stochastic variable ‡ is exponentially distributed with fixed
value for the rate ⁄.

Rev: The RevBayes Language

In RevBayes models and analyses are specified using an interpreted language called Rev. Rev bears simi-
larities to the compiled language in WinBUGS and the interpreted R language. Setting up and executing
a statistical analysis in RevBayes requires the user to specify all of the parameters of their model and the
type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the practi-
tioner to build complex, hierarchical models and to check the current states of variables while building the
model. This will be very useful in the beginning. Later on you, when you run very complex analyses, you
may want to write Rev-scripts.

Di�erently to R and BUGS, Rev is a strongly but implicitly typed language. It is implicitly typed, and thus
similar to Python, because you do not need to provide the type of a variable (which you need to in languages
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Many different clock models

• Strict clock 
• Uncorrelated clock (= the favourite) 
• Autocorrelated clock 
• Local clocks 
• Mixture models

28

Understanding the tripartite approach to Bayesian divergence time estimation 
Warnock, Wright. 2020. Elements of Paleontology
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tree modelclock modelsubstitution model

How have species originated, gone 
extinct and been sampled through time?

Note: the tree model is often referred to as the tree prior even though the fossil 
sampling times are also data. See May & Rothfels 2023 

https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syad010/7075727


Bayesian divergence time estimation
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Rate and time are non-identifiabile
This mean we need relatively informative priors on the rates and times

32dos Reis et al. 2016. Nature Genetics Reviews



Node dating

In a node dating context, we typically 
use a birth-death model to describe the 
tree generating process, given we 
observe extant species only.  

Then we separately apply a calibration 
density to constrain internal node ages.
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Oldest fossil
sampling time

Speciation 
time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Lognormal (μ, σ)

Normal (μ, σ)

time

Adapted from Heath 2012. Sys Bio



Node dating: potential issues

A lot of value information is excluded, since typically we assign one 
fossil per calibration node. 

34

sampled 
fossils

fossils used 
for node 
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info
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Node dating: potential issues

The model doesn’t describe the process that generated the fossil 
sampling times, meaning the model is statistically incoherent. 

The calibration priors are difficult to specify objectively and can have 
a massive impact on the divergence times. They can also interact with 
each other and / or the birth-death process prior in unintuitive ways.
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Some references on issues with specified vs effective priors 
Yang and Rannala. 2006. MBE  

Heled and Drummond . 2012. Sys Bio 
Warnock et al. 2012 Biology Letters

http://abacus.gene.ucl.ac.uk/ziheng/pdf/2006YangRannalaMBEv23p212.pdf
https://pubmed.ncbi.nlm.nih.gov/21856631/
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2014.1013


Is there another way?

36

Marshall (2008) American NaturalistMarshall (1990) Paleobiology



Phylogeny, time and the stratigraphic record 
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 STRATIGRAPHIC TESTS OF CLADOGRAMS 155

 U U

 sw l l W |

 T ~ WTW
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 A BC
 FIGURE 1. A, Hypothetical cladogram for five species. B, Stratigraphic ranges of those five species. C, Phylogenetic
 hypothesis consistent with A and B, but assuming that only bifurcating cladogenesis occurred and that no ancestral
 species are included. Dashed lines represent "ghost lineages" and "ghost taxa."

 Significant stratigraphic gaps mean that the
 analyzed species probably did not share the
 same time of origin, but they say nothing
 about other species that were excluded from
 the analysis.

 The premises of this analysis are very dif-

 ferent from those of recent "ghost taxa" stud-
 ies, which use cladograms to adjust diversity
 patterns (see e.g., Edgecombe 1992; Norell
 1992, 1993). Ghost lineages and ghost taxa are
 "segments of evolutionary history that can be
 recovered not by the fossil record alone but
 through paleontologically calibrated phylo-

 genetic analysis" (Norell 1993: p. 410). Ghost
 lineages extend the ranges of individual spe-

 cies whereas ghost taxa extend the ranges of
 whole clades. Figure 1 shows how cladograms

 posit ghost taxa and ghost lineages. The nodes
 of the cladogram (fig. 1A) are interpreted as
 branching events, with all lineages or clades

 branching from a given node arising simul-

 taneously (Cracraft 1981). Given the strati-

 graphic ranges shown in figure 1B, ghost lin-
 eages link species T, U, and W to their re-
 spective sister taxa (fig. 1C) and a ghost taxon
 links the (U,[V,W]) clade to the (S,T) clade.

 The ghost lineages and taxa tallied in figure
 IC are based on three assumptions: (1) that
 the phylogenetic hypothesis is correct, (2) that
 evolution proceeds strictly via bifurcating

 cladogenesis (see Rensch 1960), and (3) the

 cladogram includes no ancestral species. As
 noted above, assumption number one cannot
 be demonstrated. Assumption number two is

 anticipated by models of vicariant speciation
 or selective divergence (e.g., Brooks and

 McLennan 1991), which predict that ancestral

 morphologies disappear with the genesis of

 daughter species. However, other speciation
 models (e.g., Mayr 1963; Eldredge 1971; Eld-

 redge and Gould 1972) suggest that ancestral
 morphologies need not disappear during spe-

 ciation events. If this mode of speciation oc-
 curs, then sister taxa need not share the same

 time of origin even if the cladogram is correct.
 The third assumption is a matter of conten-

 tion, as some systematists consider ancestor-

 descendant hypotheses to be neither testable

 nor even useful (e.g., Engelmann and Wiley
 1977). However, no speciation model predicts

 that ancestral species should be less common

 in the fossil record than their descendants

 (Wagner and Erwin 1995). Some models (e.g.,
 peripheral isolation and vicariance) predict
 that the factors that favor species being found
 as fossils (i.e., greater geographic and tem-

 poral ranges) (Valentine 1989) also should fa-

 vor species producing daughter lineages
 (Wagner and Erwin 1995). Ancestors and de-
 scendants should be sister taxa on a clado-

 gram (Szalay 1977; Paul 1992), but ancestors
 obviously evolve before their descendants. If

 a cladogram links two species with signifi-
 cantly different first appearances, then the
 only remaining interpretation of the clado-

 gram is that the earlier appearing species is

 ancestral to the later appearing one (Paul
 1992). If we adhere to the three assumptions

 listed above, then we would presume that all

 sister taxa had ghost lineages extending to

 the first known appearance of their oldest
 sister taxon. Ancestor-descendant hypothe-

 ses eliminate the need for these ghost lineage

 hypotheses, which demonstrates the poten-

This content downloaded from 
             82.135.87.145 on Wed, 27 Oct 2021 05:03:51 UTC              

All use subject to https://about.jstor.org/terms

Stratigraphic tests of cladistic hypotheses  
Wagner. 1995. Paleobiology



38
Grantham. 2004. Biology and Philosophy

Until very recently, we lacked 
statistically coherent models 
that unified phylogenetic and 
temporal observations.



So what would a generating model for fossil 
data look like? 

39

→ Ideally, we want to use a tree model that describes the probability 
of observing the sampled tree given the speciation (birth), extinction 
(death) and sampling processes. 
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species origination 

t = 0

fossil 
sampling events

extinction

living 
species

time
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t = 0

Some lineages only sampled once

Some lineages go completely unsampled

Sampled ancestors



The complete tree

42
t = 0time



The reconstructed tree

43
time

t = 0



The fossilised birth-death (FBD) process 
allows us to calculate the probability of 
observing the reconstructed tree

44

Sampling-through-time in birth-death trees 
Stadler. 2010. JTB 

First implemented: Heath et al. 2014. PNAS 
Gavryushkina et al. 2014. PLoS Comp Bio

P( | )λ μ
ψ
ρ



The fossilised birth-death (FBD) process 
allows us to calculate the probability of 
observing the reconstructed tree

45

Sampling-through-time in birth-death trees 
Stadler. 2010. JTB 

First implemented: Heath et al. 2014. PNAS 
Gavryushkina et al. 2014. PLoS Comp Bio

P( | )λ μ
ψ
ρ

Ghost lineages



Why is the FBD model so important?
→ There are many statistical advantages to having a generative 
model for time tree inference: 

• greater accuracy 
• better reflection of uncertainty 
• increased flexibility 

→ We can include fossils directly in the tree + much more fossil data. 

→ We can combine data in ways that weren’t previously possible and 
even link the model parameters to abiotic processes.

46
Grantham. 2004. Biology and Philosophy



Exercise 5: Simulating under the FBD process
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Graphical representation of the FBD model

48 Adapted from Barido-Sottani et al. 2020
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Speciation, extinction and 
sampling are instantaneous rates 
— in this set up sampled from an 
exponential prior distribution, but 
could be constrained in many 
alternative ways.



Relationship to 
(some) other birth-
death process models

These models are special cases of 
the FBD process, with fossil sampling 
(ψ) = zero. 

We can also use ρ  at t > 0 to 
model serial sampling.
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Elements of Paleontology 19

Figure 5 The complete versus reconstructed trees under birth-death process
models. The assumptions of four different models are captured in each row. The
first column shows an example outcome of the joint diversification and sampling
processes (i.e., the complete tree), where diamonds represent extant or fossil sam-
ples. The second column shows the tree that contains sampled lineages only (i.e.,
the reconstructed tree). The third column shows the parameters and the name com-
monly applied to the model used to described the probability of observing the
reconstructed tree shown in column 2, given we assume the generating processes
shown in column 1. In all cases we assume constant speciation, extinction and
fossil recovery, and uniform extant species sampling. Trees and fossils were sim-
ulated and plotted using the R packages h`22aBK (Stadler, 2011) and 6QbbBHaBK
(Barido-Sottani et al., 2019). Code to reproduce this figure is available online (DOI:
10.5281/zenodo.4035016).
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complete vs. reconstructed trees

λ = 0.1 
μ = 0.05 

ρ = 0.6 

ψ = 0.05

λ = 0.1 
μ = 0.05 

ρ = 0.6

λ = 0.1 
μ = 0.05 

λ = 0.1 

Stadler 
2010

Yang and 
Rannala 

1997 
Stadler 
2009

Stadler et al. 2012 
See also: Stadler and Yang 2013
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ATGC… For living species, DNA or protein 
sequences are the primary data used for 
phylogenetics.

0110…

For fossils, morphology and sampling 
times are the primary data.



Calculating the phylogenetic likelihood

Molecular data → many options available (see previous lectures)  

Discrete morphological character data → Mk model (generalisation of the JC 
model for k states) 

Continuous trait data → brownian motion, other models that come from 
phylogenetic comparative methods

51

Great review on models for morphology: Wright. 2019 
Great online book on PCMs: Harmon. 2019  

https://academic.oup.com/isd/article/3/3/2/5519658
https://lukejharmon.github.io/pcm/


Constructing a 
morphological matrix 

52

0 or 1  
1 = presence of 
prominent ribs 
(annulations)
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shape 3

Images: Pics: Alex Pohle
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Integers are used to represent different morphological states. 



Tree based on 
141 
morphological 
characters
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Page 20 of 30Pohle et al. BMC Biology           (2022) 20:88 

to cephalopods, but more generally to intermediate taxa 
that occupy evolutionary positions close to the origin of a 
clade within a paraphyletic parent grouping.

!e phylogeny presented here may be further refined 
by future studies testing additional models or including 
more data. One promising avenue would be to incor-
porate models that can handle continuous characters 
directly [85], which have recently been developed for 
BEAST2 [86].

Implications for phylogenetic analyses of fossil datasets
Our results suggest that small deviations in our dataset 
do not have a major impact on tree topology. Although 
we do not know, which of our analyses recovered the 

tree that is closest to the “true” tree, we are able to 
make some recommendations for the selection of char-
acters and taxa in this or similar empirical datasets. To 
establish how widely these conclusions apply to other 
datasets, they should be further tested, ideally using 
simulation studies. Including a small number of contro-
versial characters does not change the main topologi-
cal patterns recovered by the analysis, but instead may 
increase uncertainty. When in doubt, it is probably safer 
to exclude them. If strongly conflicting topologies are 
recovered, it may be a good idea to reassess the morpho-
logical merits of these controversial characters first. It 
also suggests that there is some tolerance for incorrectly 
scored characters, which will not affect tree topology 

Fig. 9 Simplified cladogram of early Paleozoic cephalopods. Colored names at the top and boxes represent subclasses, and other names are on 
order level. Dashed lines represent paraphyletic groups. The evolution of connecting ring type (circles) and muscle attachments (squares) is plotted 
on the tree. Note that this figure represents a simplification and some exceptions from these patterns occur. Drawings of soft parts are speculative 
and shell proportions not to scale. Orientations do not necessarily represent assumed positions during life

Early cephalopod 
evolution clarified 
through Bayesian 

phylogenetic inference   
Pohle et al. 2022.  

BMC Biology
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Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology in Time 
Calibrated Tree Inference 

Barido-Sottani et al. 2020. Frontiers in Ecology & Evolution



Continuous trait measurement data
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Image: Adams & Collyer. 2019.
Álvarez-Carretero et al. 2019. Bayesian Estimation of Species Divergence Times 
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https://www.annualreviews.org/doi/pdf/10.1146/annurev-ecolsys-110218-024555
https://academic.oup.com/sysbio/article/68/6/967/5366706


“Total-evidence” dating uses all available 
morphological & molecular data

58

40 0
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Living species can have DNA 
& morphological data, while 
fossils are positioned on the 
basis of morphology only. 

This approach has the 
advantage of accounting for 
uncertainty in fossil 
placement. 



“Total-evidence” dating under the uniform tree model
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The uniform tree prior 
assumes all trees and 
branch lengths are equally 
likely within the bounds of 
the fossil ages (+ a max 
upper bound).  

It does not explicitly 
account for the fossil 
sampling process.  Dated tree of Hymenoptera

https://academic.oup.com/sysbio/article/61/6/973/1665823


Sampled ancestors
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Sampled ancestors
The proportion increases with higher turnover (birth - death) or higher sampling.

61 Walker, Heath. 2020. Phylogenetics in the Genomic Era. 

https://hal.archives-ouvertes.fr/hal-02536361/


Sampled ancestors
Ignoring sampled ancestors can lead to inaccurate parameter estimates

62 Gavryushkina et al. 2014 PLoS Comp Bio

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003919


Under the FBD process fossils can be incorporated via 
character data (total-evidence) OR topological constraints

63
Image: Soul & Friedman 2015, Sys Bio
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As such, our assessment of the success of CBPs in
capturing evolutionary processes and patterns should
be viewed as maximally optimistic and our results
should not be taken as evidence for or against the
capacity of these methods to capture real patterns. In
particular, because our trait data are simulated, none of
the analyses provide any information on real patterns in
these groups.

Conversion of Taxonomies and Cladograms into Phylogenies:
Tree Construction and Time-Scaling

All tree manipulation and analyses were performed in
the R software environment (3.0.2; R Core Team 2013).
Topologies derived from cladograms and taxonomies
were time-scaled in order to produce phylogenies
(method outlined below). References and details
for the source topologies are shown in online
Appendix 1. All data sets are at the generic level
except that for tetraodontiform fishes, where species-
level classifications and range data were available. When
selecting cladograms we used whichever tree topology
the original authors had applied for phylogenetic
comparative analyses (if included), or the topology
preferred by the original authors in the absence of
further analyses within the publication. This was
to ensure that our data set included topologies
that would be the most likely to be accepted for
use with PCMs incorporating paleontological data.
Our data set therefore included solutions arising
from Bayesian, maximum-likelihood and maximum
parsimony inference. The literature used to obtain
taxonomies only contained one classification scheme for
each clade, and this was converted in to a tree structure
as a series of nested polytomies corresponding to each
taxonomic rank (Fig. 1).

Taxonomies by nature contain many polytomies
when directly plotted as trees (e.g., if there are five
genera contained within one family, these genera would
be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
tree (mode of evolution). In preliminary analyses
(Supplementary Material: Results, available on Dryad),
executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
2011). Housworth and Martins (2001) provide a method
by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
error bounds for the test statistic in a PCM.

Yo
lid

a
Ze

al
ed

a
Iso

ar
ca

So
le

m
ya

Ac
ha

ra
x

Ad
ul

om
ya

Bu
ch

io
la

Eo
pt

er
ia

Ne
ck

la
ni

a
Sl

av
a

Ca
rd

io
la

Eu
th

yd
es

m
a

Op
ist

ho
co

el
us

Subfamily
Family
Order
Subclass
Class

Yolida
Zealeda
Isoarca

Solemya
Acharax

Adulomya
Buchiola
Eopteria
Necklania
Slava
Cardiola
Euthydesma
Opisthocoelus

Praecardiinae

Cardiolinae

Praecardiidae

Solemyidae

           Isoarcidae

Nuculanidae

Praecardiacea

Solemyacea

Nuculanacea
Nuculoida

Solemyoida

Praecardioida

Palaeotaxodonta

Cryptodonta

Bivalvia
a)

b)

FIGURE 1. Method for converting a taxonomic classification to a
cladogram that can then be time-scaled with fossil range data to make
a phylogeny. Taxa that are in the same group at a particular rank are
combined in a polytomy, starting at the genus level and moving toward
the root of the tree. a) The original classification as published. b) The
resulting cladogram after conversion, before time-scaling.

Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
taxa derived principally from the Paleobiology Database
(PaleoBioDB; www.paleobiodb.org last accessed March
30, 2015). These data were modified where the taxon was
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be depicted as a single multichotomy, unless sub-
familial relationships had been proposed). These were
left as hard polytomies to represent the maximum
amount of resolution based on available information,
except where the PCM required a fully resolved
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executing simulations where (i) taxonomies were
randomly resolved before time-scaling or (ii) random
trees used for comparison were collapsed to have the
same number of internal nodes as the TBP did not
make a notable or systematic difference to the outcome.
This is consistent with previous work showing that the
inclusion of polytomies in a phylogeny for a PCM does
not bias the result and has a negligible effect on the rate
of type I error (Garland and Diaz-Uriarte 1999; Stone
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by which error caused by uncertainty in relationships
within a polytomy can be incorporated into estimates of
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Cladograms of extinct taxa can be scaled according
to the first appearance date (FAD) of each taxon to
generate phylogenies with branch lengths representing
the amount of time since sister taxa diverged (Lloyd et al.
2012; Bapst 2013, 2014). The branch lengths are estimated
based on the FAD of each taxon in the fossil record,
and the assumption that the divergence between two
lineages must have occurred, at the latest, at the FAD of
the older taxon. Some analyses also require an estimate
of the last appearance date of a taxon (e.g., measuring the
phylogenetic clustering of extinction) to estimate a taxon
duration. First and last possible appearance dates for all
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Phylogenetic analyses 
need taxonomists!

64



40 40 00

Under the FBD process fossils can be included with and 
without character data

Note: For fossils without 
character we can’t infer the 
precise placement, but we 
can take advantage of the 
additional age information, 
since this helps inform the 
FBD model parameters. 
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1010…

1010…

ATGC… 

ATGC… 1010…

ATGC…

ATGC… 1010…
ATGC…



The signal for the extant tree topology largely comes from the 
molecular alignment. The signal for the topology inc. fossils 
comes from the morphological matrix and fossil ages.  

The signal for diversification and sampling rates (& consequently 
the divergence times) comes from the fossil sampling times. 
Much more dependent the birth-death-sampling process

66

Putting the F in FBD analyses: tree constraints or morphological data?  Barido-Sottani et al. bioRiv 
See also Barido-Sottani et al. 2018, 2020.

https://www.biorxiv.org/content/10.1101/2022.07.07.499091v1
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Time calibrated tree of 
living and fossil bears 

First application of the FBD model.  

Fossils are incorporated via 
constraints, not character data. Their 
precise placement can be inferred, but 
this uncertainty will be reflected in the 
posterior.

Heath et al. 2014. PNAS
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First application of total evidence 
dating using the FBD model.  

Fossils are incorporated using character 
data, via a total evidence approach. 
Their placement can be inferred.

Gavryushkina et al. 2016. Sys Bio 
See also: Zhang et al. 2016. Sys Bio



Analysis of fully extinct 
clades under the FBD 
process

Example using crinoids  
Wright (2017) Sci Reports
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A few notes on software
for Bayesian time tree estimation. All open source.

• MCMCTree — BDSS process, continuous trait models. Best option for large 
sequence alignments and trees. Requires a fixed tree. Language: C. 

• PhyloBayes — for extant time tree inference. Good for amino acid data. C++. 
• MrBayes — FBD model, some unique clock models. Easy to use. C++. 

For increased modularity & flexibility: 
• BEAST2 — FBD model, lots of flexible tree and character evolution models. More 

widely used in epidemiology. Java. (Sister software BEAST 1.8) 
• RevBayes — FBD model, lots of flexible tree and character evolution models. C++. 

Uses graphical models. Developed by folk closer to macroevolution.  

70

1001… 
1101… 
0100…

ATAT… 
TCAC…  
????...

http://beast2.org/
https://beast.community/index.html
http://revbayes.github.io/


Exercise 6: Inference under the FBD process
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A few additional points, if we have time.

72



Skyline birth-death models
The skyline model incorporates piecewise constant rate variation

73 Stadler et al. 2012. PNAS.

https://www.pnas.org/doi/10.1073/pnas.1207965110


the supply of susceptibles. This feedback,
along with the effect of pathogen epidemic
dynamics on genetics in other systems, is
illustrated schematically in fig. S1A.

Partial immunity to influenza A virus
also generates strong fitness differences
among strains, leading to rapid strain turn-
over. Such continual immune selection de-
termines the shape of phylogenies of the
HA (Fig. 1E) and NA genes; these are
strongly temporal in structure with high
rates of lineage extinction, so that genetic
diversity at any time is limited. The central

trunk depicts the ancestry of the successful
lineages and has the highest rate of amino
acid replacement at key antigenic sites (9),
suggesting that immunological distance
from previous strains determines viral fit-
ness. Although substantial progress has
recently been made in integrating the
individual- and population-level dynamics of
influenza (5), the role of within-host dynam-
ics remains to be added to the picture. Influ-
enza B, and influenza A in other mammals,
generally shows more complex patterns of
antigenic drift (fig. S1B). In addition to anti-

genic drift, influenza pandemics can be
caused by novel HA and NA combinations
(antigenic shift). Aquatic birds are the natural
reservoirs of influenza A viruses and harbor a
variety of antigenic types, thereby providing
an environment in which new recombinant
subtypes can arise and transmit to mammals.

This phylodynamic category also includes
foot and mouth disease virus (FMDV), which
causes a highly infectious acute epidemic
disease of livestock. Primary infection or
vaccination gives imperfect protection
against other variants of the virus, and there is

Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HA1) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the
virus genotype 1b E1E2 gene sampled from different pa-
tients (65 sequences, 1677 bp). (I) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled
from a single patient over 5.8 years [58 sequences, 627 bp;
patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46 ). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.

R E V I E W

16 JANUARY 2004 VOL 303 SCIENCE www.sciencemag.org328

Tree shape is informative about underlying dynamics
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Measles

Influenza

Dengue HIV

This paper coined the term phylodynamics 
Grenfell et al. 2004. Science



Estimating parameters in macroevolution

75

Ants have very variable fossil 
sampling over time. 

We can take this into account using 
the FBD skyline model.

Images: April Wright 



Estimating parameters in macroevolution
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The oldest fossils are around 100 Ma. 

Different assumptions about the fossil 
sampling process produce different results. 

Skyline models recover an older age 
estimate for the origin of ants (= 140 
Ma).

Images: April Wright 



impact on tree inference across a wide range of realistic
scenarios, which is congruent with the results of empirical
studies [10]. Analyses that incorporate palaeontological data
are more accurate than those based exclusively on extant
taxa, regardless of inference method (figure 1). In part, this
improvement is driven by fossils’ power to elucidate relation-
ships within living clades, especially among lineages
separated by mid- to shallow divergences (figure 3). Hence,
we might expect the increased congruence between morpho-
logical and molecular trees found for some clades [6–9,51])
to reflect a general trend of consilience through improved
accuracy as fossils are incorporated in phylogenetic

reconstruction. Trees that combine living and extinct taxa
also show a higher proportion of resolved nodes, while at
the same time leaving more deep nodes unresolved (figures 1
and 3). The phylogenetic analysis of morphological data has
been previously shown to result in overprecise topologies
[21,24], a phenomenon we find to be most prevalent among
deep divergences. This result implies that characters evolving
at rates comparable to those of empirical morphological
traits fail to retain phylogenetic signal for ancient and rapid
divergences (electronic supplementary material, figures S3
and S10). With increasing fossil sampling, this overprecision
is remedied as deep nodes collapse (especially under
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Figure 1. Impact of fossil sampling, missing data and method of inference on topological accuracy and precision. Precision (right) represents the proportion of
resolved bipartitions/quartets, accuracy (left) the fraction of these that are correct. Values correspond to means ± 1 s.d. (Online version in colour.)
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Fossils improve phylogenetic analyses of morphological characters 
Koch, Garwood, Parry. 2020. Proc B

accuracy precision

Time informs topology
clock = inference with fossil ages



What is a temporal 
observation in the context of 
the FBD model? 🤔

Sampling events occur with 
instantaneous sampling rate ψ, assuming 
a Poisson sampling process.  

This means, there’s an exponential 
waiting time between events. 

At any given point in time, a lineage 
(branch) can only be represented once. 
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Ignoring Fossil Age Uncertainty Leads to Inaccurate Topology in Time Calibrated Tree Inference 
Barido-Sottani et al. 2018, 2020.

fossil age uncertainty

Stratigraphic ranges



Stratigraphic ranges
Fossil taxa are associated with first & last appearances.
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Brachiopod ranges from Gotland



The FBD process for the analysis of stratigraphic ranges

81

Analysis of stratigraphic range data 
Stadler et al. 2018. JTB 

See also Warnock, Heath, Stadler. 2020. Paleobiology
Pr( | )λ μψ
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specimen level FBD process morpho taxon FBD process

Pr( | )λ μψP( | )λ μ
ψ
ρ

These belong to a growing family of models.



Parameterisation of the process
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Parameter Transformation

Net diversification d = λ − μ

Turnover v = μ/λ

Sampling proportion s = ψ/(μ + ψ)

Speciation λ = d/(1 − v)

Extinction μ = (vd)(1 − v)

Sampling ψ = (s/(1 − s))((vd)/(1 − v))

We can also transform fossil recovery rate into a per-interval sampling probability. 



The occurrence birth-death process models

84 Andréoletti, Zwaans, et al. bioRxiv.
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https://www.biorxiv.org/content/10.1101/2020.10.27.356758v1


The occurrence birth-death process

85 Andréoletti, Zwaans, et al. bioRxiv.
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Case study: COVID-19 aboard the Diamond Princess

86

Jan 20 Jan 27 Feb 03 Feb 10 Feb 17 Feb 24 Mar 24

Cabin quarantine Andréoletti, Zwaans, et al. bioRxiv.

https://www.biorxiv.org/content/10.1101/2020.10.27.356758v1


Casestudy: cetaceans

87 Andréoletti, Zwaans, et al. bioRxiv.

https://www.biorxiv.org/content/10.1101/2020.10.27.356758v1


These models aren’t without caveats 😬
Phylogenetic dating is a kerfuffle. The theory is complex and inference is expensive. 

Model identifiably 
Louca & Pennell 2020. Extant timetrees are consistent with a myriad of diversification 
histories. Nature. 
Louca et al. 2021. Fundamental Identifiability Limits in Molecular Epidemiology. MBE. 
It’s not the end of the world!! See e.g., Morlon et el. 2023 (TREE), Kopperud et al. 
2023 (PNAS). 

Model selection 
May & Rothfels 2023. Diversification models conflate likelihood and prior, and cannot 
be compared using conventional model-comparison tools. Sys Bio.
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https://www.nature.com/articles/s41586-020-2176-1
https://academic.oup.com/mbe/article/38/9/4010/6278301
https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(22)00027-1
https://www.pnas.org/doi/abs/10.1073/pnas.2208851120
https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syad010/7075727

