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A bit about me

Worked in both paleo and 
computational biology groups


Interested in phylogenetic approaches 
that can be applied to the fossil record 
/ hypothesis testing in deep time


→ all of the models are applicable to 
non-paleo problems, e.g., epidemiology, 
microbiology, archaeology, cell biology
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→ Estimate parameters & test 
hypotheses from real fossil data 

analysis

→ Generate fake data to test 
methods
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What is phylogenetics?
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What is phylogenetics?

Phylogenetics allows us to study the relationships 
between entities that are related via an evolutionary 
process.


We can apply the same principles to any scenario 
where we have hierarchical (ancestor & descendant) 
relationships.


The data is anything that can tell us about the

relationships between individuals.
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Nothing in biology makes sense except in the light of evolution

— Theodosius Dobzhansky (1973) 

Nothing in evolution makes sense except when seen in the light of 
phylogeny — Jay M. Savage (1997)

7



A phylogenetic tree captures part 
of evolutionary history that is 
otherwise not directly observable.


We can date trees by combining 
character data (molecular or 
morphological) & temporal 
evidence. 

8
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What can we learn from trees?

Evolutionary relationships


9Adapted from Friedmann et al. 2013. PRSB

M
al

ag
as

y 
an

d
In

di
an

 c
ic

hl
id

s
So

ut
h 

A
m

er
ic

an
 c

ic
hl

id
s

A
fr

ic
an

 c
ic

hl
id

s

 

tree topology →



What can we learn from trees?

Evolutionary relationships


Timing of diversification events


Geological context


Rates of phenotypic evolution


Diversification rates (origination & extinction)
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⚠ Warning — phylogenetics* is really really hard.


We’re asking a lot of a relative small amount of data, among other reasons.


Phylogenetics is also full of jargon, so don’t hesitate to ask questions!

*and palaeobiology in general
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Cambrian stalked echinoderms show 

unexpected plasticity of arm construction 


Zamora & Smith. 2012. Proc B

Two of the best-preserved specimens of D. purujoensis

were studied using the Metris X-Tek HMX ST computed

tomography (CT) system at the Natural History Museum,

London. High-resolution slices were obtained and a three-

dimensional model of its anatomy built using the software

SPIERS [17]. The better of these was used to build a three-

dimensional model based on 1862 digital slices that were

treated independently. Isolated plate boundaries were

impossible to differentiate internally owing to the absence

of infilling sediment, impeding a full reconstruction of

these elements. Plating and stereom details are better

observed from latex casts. The most important contri-

bution from the CT scan was accurate reconstruction

of the arm structure, a key character in the discussion

(see above).

A cladistic analysis was carried out using the software

PAUP* [18] to establish this new taxon’s phylogenetic position.

We included all nine Cambrian stalked echinoderms whose

morphologies are well known (electronic supplementary

material, table 1), as well as two representative Early Ordovician

crinoids (Aethocrinus and Titanocrinus) and an Ordovician glyp-

tocystitid and pleurocystitid. As root, we used the Lower

Cambrian Kinzercystis, which is generally considered basal to

all stalked echinoderms [19–21]. Twenty-eight skeletal charac-

ters were identified as phylogenetically informative and scored.

Character descriptions and the resultant data matrix are

provided as the electronic supplementary material. A branch-

and-bound search was carried out with all characters equally

weighted and unordered. Bootstrap values are based on 1000

random addition replicates.
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Figure 1. Dibrachicystis purujoensis gen. et sp. nov. (a) MPZ2011/2, natural mould of complete individual. (b) MPZ2009/
1236, theca, arms and proximal part of stem. (c) MPZ2011/3, theca and basal part of arms. (d) MPZ2011/4, tripartite
stem. (e–g,j,k) CT model reconstruction of stem based on MPZ2009/1236. (h) MPZ0001, proximal part of stem and
cone-shaped plate. (i) MPZ2011/5, single ossicle of proximal stem and reconstruction. Abbreviations: af, articulation
flange; cp, conical plate; ds, distal stem; fa1, fa2, feeding appendages (arm); pe, periproct opening; ps, proximal stem;
t, theca. (b–d,h,i) Latex casts.

294 S. Zamora & A. B. Smith Arms in Cambrian echinoderms

Proc. R. Soc. B (2012)
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Objectives

Day 1


Day 2
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Where do we begin?
Some useful terms. Note: genetic distance = rate x time

14

A

B

C

D

E

internal nodes or MRCAs

tips or leaves
branches or edges

branch lengths = genetic distance OR time

root



Where do we begin?
Tip for orientation: look for the root!
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Rooted versus unrooted trees

Phylogenies are unrooted by default, because phylogenetic characters don’t 
contain information about the direction of time.

16
Image source Philip Donoghue



Rooted versus unrooted trees
We have to find a way of 
breaking one of the branches 
in two, where the break 
represents the oldest 
divergence in the tree. 


The most common approach 
is to use an outgroup — a 
taxon that we know is more 
distantly related than any of 
the taxa within the ingroup.

17
Image source Philip Donoghue



Rooted versus unrooted trees

By default phylogenies are not 
rooted.


We need an outgroup OR a 
model that incorporates time.

18

Use Art Poon’s online tool to explore this further. 
Click here to learn more about reading trees.

http://slides.filogeneti.ca/include/rooting.html
https://artic.network/how-to-read-a-tree.html


Rooted versus unrooted trees
How many possible trees are there for 3 species?
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taxa A

taxa B

taxa C

taxa A

taxa C

taxa B

Note these 2 trees are the same! B and C are more closely related.

rooted = 3

taxa A

taxa B

taxa C

taxa B

taxa A

taxa C

taxa C

taxa A

taxa B

unrooted = 1

taxa A

taxa B

taxa C



Exercise

How many possible unrooted or rooted trees are there?

What do you think the correct rooted tree should be?

Write down your logic.

20



There are a huge number of possible trees!

21



Exercise
What do you think the correct tree should be?

A = Lamprey, B = Antelope, C = Bald eagle, D = Alligator, E = Sea bass

22

Source Khan Academy

https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree


How do we find the “best” tree?

23
Image source Tracy Heath



Exercise
What do you think the correct tree should be?

Write down your logic.

→ Most people intuitively assume the tree with the fewest changes is correct.

→ This approach to tree building is called parsimony.

24



Of course it depends how you measure “best”

Both maximum likelihood and Bayesian inference are model-
based approaches.

25



Parsimony
In reality, we never know the true tree.

Maximum parsimony selects the tree (or trees) that require the fewest number 
of changes.

Given two trees, the one minimising the parsimony score (i.e., the minimum 
number of changes) is the better one.

26

Branch lengths = number of 
observed changes or steps.



Parsimony
Based on the parsimony principle: assume simpler explanations are better than 
complex ones. The greatest advantage of parsimony is its beautiful simplicity 
(Yang, 2014).


It is computationally fast and often produces sensible results. 

Parsimony does not make explicit assumptions about the evolutionary process 
that generated the observed data. Some have argued that parsimony is 
“assumption free” — its not! Parsimony makes implicit assumptions.

27



Exercise 1: intro to phylogenetics using R

28



Convergence or homoplasy
Homoplasy: a trait that is found in two species, but not in their common ancestor.

The bluebird, Pterosaur (extinct) and 
fruit bat: 3 different vertebrates 
independently lightened bones and 
transformed hands into wings.

29
Image source Convergence Evolution: an introduction 

https://convergentevolution.wordpress.com/2015/04/16/hello-world/


Molecular convergence

If we assume the simplest solution is correct, this could mislead our inference if 
the underlying process is more complex.

30

Species B

Species C

Species A
C to G mutation
at position 2

Ancestral
sequence TCATCC

TGATCC

TCATCC

TCATCC



Molecular convergence

If we assume the simplest solution is correct, this could mislead our inference if 
the underlying process is more complex.

31

Species A

Species B

Species C

Ancestral
sequence TCATCC

TCATCC

TGATCC

TCATCC

C to G mutation
at position 2

G to C

C to G G to C



Parsimony
When we build a tree using parsimony and observe convergence, ad hoc 
explanations (e.g., convergence, reversals) are required to explain the patterns.


In the case of birds, pterosaurs and bats, we know based on other anatomical 
features that these taxa are distantly related, but convergence can interfere with 
our ability to recover the correct tree. In fact, this is very common.


Parsimony has been demonstrated to be statistically inconsistent. An estimator 
is consistent if it is guaranteed to get the correct answer with an infinite amount of 
data. Felsenstein (1978) demonstrated that in some situations, parsimony is 
inconsistent, i.e., it will recover the wrong tree, even with an infinite amount of data.

32

https://www.jstor.org/stable/2412923


Long branch attraction
If you have long branches (due to higher rates of evolution), the probability of 
misleading parsimony due to convergence is much higher.

33
Image source Tracy Heath



Long branch attraction
Parsimony is almost guaranteed to get the tree below wrong. It will incorrectly 
place two long branches (T1,T3) together as sister lineages. More data will 
make the problem worse, making this approach statistically inconsistent.

34
Image source Tracy Heath



Long branch attraction

Here, the branch lengths 
represent probability (p, q) of 

change along that branch.

35

Felsenstein, Inferring Phylogenies, (2004)

Image source Tracy Heath 

c.f. Ecdysozoa vs. Coelomata, Telford et al. (2005)

https://www.sciencedirect.com/science/article/pii/S0960982205003714


Long branch attraction

Important: this issue can affect all tree building methods! And all types of data 
(e.g., DNA, morphology).


Things that (sometimes) help: high quality data, increased taxon sampling inc. 
shorter branching outgroups, models that more reliably capture the variation in 
evolutionary rates.

36



Parsimony vs. model-based approaches

Model-based approaches assume an explicit model of molecular or 
morphological evolution.


If evolutionary distance is relatively small, model based approaches and 
parsimony will often recover the same tree.


As distance increases, the amount of homoplasy (i.e., convergent or parallel 
changes) also increases, parsimony is more likely to recover the wrong tree.

37



Short internal branches pose a huge 
challenge for any approach

Kapli et al. (2021) Science Advances – support for deuterostomes (chordates + echinoderms) varies across 
datasets and analyses under different models, probably caused by the extremely short (blue) branch 
associated with this group.

38

https://www.science.org/doi/10.1126/sciadv.abe2741


Summary so far

Parsimony is simple and intuitive but makes implicit assumptions about the 
evolutionary process.


Next, we’ll explore model-based approaches — these are more flexible and 
make explicit assumptions → it’s very important you to try to understand what 
these are!

39



What do we mean by model?

40

What is a statistical model? When is an equation a model?

What is a mechanistic model?

What is the difference between an algorithm and a model?
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A statistical model is a type of model that includes a set of assumptions 
about the data-generating process.

 
It should be possible to simulate data under the assumptions of the model.


If we’re lucky, we might also be able to estimate parameters under the 
model*. This isn’t always possible because some models are too complex.

*A fancy way of saying this is, ”we can perform inference under the model”.

https://en.wikipedia.org/wiki/Statistical_model


Example The solid black line is a linear

regression line.


We can estimate the parameters of

the regression model.


Y = Xβ + ε


It’s also straightforward to

simulate data under this model.

42
Image source Harmon (2019)

https://lukejharmon.github.io/pcm/chapter5_mvbm/


Example The boundary-crosser and

three-timer metrics are not

models.


They provide a clever way of

approximating origination and

extinction rates (and often perform

well), but they don’t describe the

data generating processes.

43
Foote (2000)



44

Mechanistic or process based models are based on ”physical principles”. They 
describe the data as a function of a set of parameters that have a tangible 
biological meaning.


A regression model is not mechanistic — it describes the relationship between X 
and Y but the parameters don’t have a biological meaning.

 
Many of the models we use in statistical phylogenetics are mechanistic models, 
e.g. they might include origination, extinction and sampling parameters explicitly.


Note the definition of different model types varies a lot. The above is just my take 
on things from a very phylogenetics perspective.

https://en.wikipedia.org/wiki/Substitution_model
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An algorithm is a precise rule (or set of rules) specifying how to solve some 
problem.

Algorithms are used in phylogenetics for all sorts of tasks, inc. searching tree 
space or traversing trees.

https://www.cs.cmu.edu/~15110-n15/lectures/unit03-Algorithm-1.pdf


Model-based phylogenetics
Models can account for the possibility that multiple changes occur at the same site.

46

Species A

Species B

Species C

Ancestral
sequence TCATCC

TCATCC

TGATCC

TCATCC

C to G mutation
at position 2

G to C

C to G G to C

Branch lengths = expected 
number of changes per site

In the absence of any information about time, rates are relative, i.e., rates are 
expected substitutions per site, independent of any time unit.



Model-based methods: advantages and disadvantages

Statistically more sound


Can test and update explicit assumptions


There are many more things we can do with models in palaeobiology!


Computationally slow (often)


Results are sensitive to model choice

47
Yang (2014) Molecular Evolution: A Statistical Approach



Phylogenetic data

48



Phylogenetic character data

Two main sources of data for building trees:

1. Molecular sequences (nucleotides or proteins)

2. Morphological characters (discrete or continuous)

First we need to collect the data and establish homology.

49



Homology — similarity due to shared ancestry

Each coloured bone is a homologous structure.

50



Molecular sequence data

Nucleotides provide a four letter

alphabet we can use to generate

trees.


Genes encode amino acids

(proteins) that in turn provide a 20

letter alphabet.


Protein sequences are typically

used for more distant evolutionary

relationships.

51

= Adenine

= Thymine

= Cytosine

= Guanine

= Phosphate
 backbone

DNA



Phylogenomics pipeline

Multiple sequence alignments are the 
primary input for molecular phylogenetics

52
Duchê ne (2021) Phylogenomics Primer



Models of character evolution

Also known as substitution / site / character models.


They capture the process of character evolution.


Allow us to ask, what is the probability of transitioning from one state to 
another over time?

53



What assumptions might you want to

incorporate into a model of sequence

evolution?

54

e.g., would all sites evolve at the same rate?



Models of nucleotide evolution: rate matrix

→ We can calculate the the probability 
of changing between two states over a 
given branch lengths.

Using the substitution model we can calculate the probability of transitioning 
between different nucleotides. μ is the substitution rate.

55

The longer the interval of time has past, the more likely we are to observe a change. 
 
You can explore this principle via this app by Paul Lewis.

https://molevolworkshop.github.io/applets/jc-transition-probabilities/


The Jukes-Cantor model of sequence evolution

The simplest model of sequence evolution.


Assumptions: equal mutation rates and equal 
base frequencies.


Base frequencies are the proportion of each 
nucleotide within the dataset.

56



The GTR model of sequence evolution

Note the rates are symmetric — e.g., 
the rate of change between A and T, 
is the same in both directions — but 
the proportion of each character state 
also affects the probability of change.

Nucleotides (ATCG) occur at different 
frequencies depending on the group of 
species or gene.  
 
If a given nucleotide appears in our 
dataset at a low frequency, we are less 
likely to observe a transition to that state.


GTR assumptions: unequal mutation rates 
AND unequal base frequencies.

57



The JC versus GTR models

Line width represents the relative rate of change between different steps.

Another way of visualising substitution models.

58

A G

C T

JC

A G

C T

GTR



JC & GTR belong to a large family of substitution models

59 Posada & Crandall (1998) Bioinformatics



A very brief introduction to maximum 
likelihood

60
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Model based phylogenetics

Assume an explicit model of character evolution.


Maximum likelihood is a method for estimating unknown parameters in a 
model. The tree that maximises the likelihood is the best one.


P( data | model, tree )

62



Maximum likelihood algorithm simplified

1. We first propose a topology with branch lengths and then calculate the 
likelihood (taking into account all sites).


2. We then propose a new tree or set of branch lengths and recalculate the 
likelihood. If the likelihood is >, we accept this tree as being better.


3. Proceed until we can’t improve the likelihood any further.

63



Exercise 2: intro to phylogenetics using R

64



Introduction to graphical models and 
RevBayes

65



Phylogenetic inference — the old way

66

theory
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Is there a better way?

67

theory
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Aims for RevBayes

68

Flexible model specification

— Availability of (common) models

— Extendability


Easy to learn

— Well structured model specification

— Explicit models

— Documentation, examples and tutorials

Computational efficiency

— Fast likelihood calculators

— Efficient (MCMC) algorithms


There’s a huge team behind the 
scenes. 


Höhna et al. 2016. Sys Bio
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Graphical models provide tools for
visually & computationally representing
complex, parameter-rich probabilistic
models

We can depict the conditional
dependence structure of various
parameters and other random variables

Höhna, Heath, Boussau, Landis, Ronquist, Huelsenbeck. 2014.
Probabilistic Graphical Model Representation in Phylogenetics.
Systematic Biology. (doi: 10.1093/sysbio/syu039)

RevBayes uses a graphical model framework

Graphical models provide tools for visually and computationally 
representing complex, parameter-rich probabilistic models.

 

We can depict the conditional dependence structure of various 
parameters and other random variables.

69

Höhna et al. 2014. Sys Bio



Graphical models — types of variables (nodes)

a) fixed-value variables

b) random variables that depend on other 
variables

c) variables determined by a specific 
function applied to another variable 
(transformations)

d) observed stochastic variables (data)

e) replication over a set of variables

70

RevBayes Tutorial — Getting Started

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over
a set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Partially reproduced
from Fig. 1 in Höhna et al. (2014).]

Figure 2: Graphical model representation of a simple lognormal model. A total of N observations of variable x
are observed and occupy a clamped node. This parameter is log-normally distributed with parameters µ and ‡ (log
mean and standard deviation, respectively). The parameter µ is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and ‡. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyperprior on
M with constant nodes for the shape – and rate —. The stochastic variable ‡ is exponentially distributed with fixed
value for the rate ⁄.

Rev: The RevBayes Language

In RevBayes models and analyses are specified using an interpreted language called Rev. Rev bears simi-
larities to the compiled language in WinBUGS and the interpreted R language. Setting up and executing
a statistical analysis in RevBayes requires the user to specify all of the parameters of their model and the
type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the practi-
tioner to build complex, hierarchical models and to check the current states of variables while building the
model. This will be very useful in the beginning. Later on you, when you run very complex analyses, you
may want to write Rev-scripts.

Di�erently to R and BUGS, Rev is a strongly but implicitly typed language. It is implicitly typed, and thus
similar to Python, because you do not need to provide the type of a variable (which you need to in languages

3



Specifying graphical models using the Rev syntax

71

RevBayes Tutorial — Getting Started

such as C++ and Java). We do implicit typing to help users who do not know about the actual types of
the variables. However, strongly typed means that every variable has a type and arguments of functions
need to match the required types. The strong type requirements ensures that you build meaningful model
graphs. For example, the variance parameter of a normal distribution needs to be a positive number, and
thus you can only use variables that are positive real numbers. RevBayes does automatic type conversion.

Specifying Models

Table 1: Rev assignment operators, clamp function, and plate/loop syntax.
Operator Variable

<- constant variable
~ stochastic variable
:= deterministic variable
node.clamp(data) clamped variable
= inference (i.e., non-model) variable
for(i in 1:N){...} plate

The variables/parameters of a statistical model are created using di�erent operators in Rev (Table 1). In
Figure 3, the Rev syntax for creating the model in Figure 2 is provided. Because Rev is an interpreted
language, it is important to consider the order in which you specify your variables (cf. BUGS where the
order is not important). Thus, typically the first variables that are instantiated are constant variables.
Constant variables require you to assign a fixed value using the <- operator. Stochastic variables are
initialized using the ~ operator followed by the constructor function for a distribution. In Rev, the naming
convention for distributions is dn*, where * is a wildcard representing the name of the distribution. Each
distribution function requires hyperparameters passed in as arguments. This is e�ectively linking nodes
using arrows in the graphical model. The following code snippet creates a stochastic variable called M
which is assigned a gamma-distributed hyperprior, with shape alpha and rate beta:

alpha <- 2.0

beta <- 4.0

M ~ dnGamma(alpha, beta)

The flexibility gained from the graphical model framework and the interpreted language allows you to easily
change a model by swapping components. For example, if you decide that a bimodal lognormal distribution
is a better representation of your uncertainty in M, then you can simply change the distribution associated
with M (after initializing the bimodal lognormal hyperparameters):

mean_1 <- 0.5

mean_2 <- 2.0

sd_1 <- 1.0

sd_2 <- 1.0

weight <- 0.5

M ~ dnBimodalLognormal(mean_1, mean_2, sd_1, sd_2, weight)

4
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Exercise 3: intro to the Rev language
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Introduction to Bayesian inference and MCMC
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Bayes’ theorem

80

P( model | data ) =
P( data | model ) P( model )

P( data )

likelihood priors

marginal 
probability of 

the data

posterior



Bayes’ theorem
P ( data | parameters, model ) ← the model used to calculate the likelihood. 

P ( parameters | model ) ← this represents our prior knowledge of the model 
parameters.


P ( data | model ) ← the probability of the data integrated over all possible 
parameter values. Can be thought of as a normalising constant (i.e., ensuring 
the posterior sums to one). 

P ( parameters | data, model ) ← the posterior reflects our combined 
knowledge based on the likelihood and the priors.
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The output of a Bayesian phylogenetic analysis is a 
distribution of trees (+ any other estimated parameters)
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Probabilities vs probability densities

In phylogenetics, probabilities are not 
normally discrete (i.e., represented by a 
single value) and we’re often dealing with 
a lot of uncertainty (esp. in the fossil 
record). Instead we typically work with 
probability densities.
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Probability densities

λ. is drawn from an 
exponential distribution

The x-axis represents the

value of our parameter λ.


The y-axis is relative probability.


The height of the distribution reflects 
the relative probability of a given 
range of parameter values.
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Probability densities

λ. drawn from an gamma 
distribution
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Why do we need Markov chain Monte Carlo?
Probability densities already introduce some complexity. Remember the 
posterior is not usually a point estimate (i.e., a single value) but a range of 
values. 

The marginal probability of the data is also very tricky to calculate. 

P ( data | model )

Calculating this requires taking into account all possible alternative parameter 
combinations (e.g., all possible trees).


This makes it challenging to calculate the posterior analytically (i.e., exactly).
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What is Markov chain Monte Carlo (MCMC)?

A group of algorithms for approximating the posterior distribution (also known 
as samplers). 

Markov chain means the progress of the algorithm doesn’t depend on its past.

Monte Carlo (named for the casino in Monaco) methods estimate a distribution 
via random sampling.


We use this algorithm to visit different regions the parameter space. The 
number of times a given region is visited will be in proportion to its posterior 
probability.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874253/


What is Markov chain Monte Carlo (MCMC)?

The aim is to produce a histogram that 
provides a good approximation of the 
posterior.


The most widely used MCMC algorithm 
in phylogenetics is the Metropolis 
Hastings algorithm.
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MCMC robot's rules
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Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills



Actual rules (Metropolis algorithm)
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Uphill steps are always 
accepted because R > 1

Slightly downhill steps are usually 
accepted because R is near 1

Drastic “off the cliff” downhill 
steps are almost never accepted 

because R is near 0

6

8

4

2

0

10

The robot 
takes a step if 
a  Uniform(0,1) 

random 
deviate  R

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 0.2 m
R = 0.2/6.2 = 0.03

Metropolis et al. 1953. Equation of state calculations by fast 
computing machines. J. Chem. Physics 21(6):1087-1092.



The marginal likelihood is cancelled out
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When calculating the ratio (R) of posterior densities, the marginal 
probability of the data cancels.

Posterior
odds

Likelihood
ratio

Prior
odds

Apply Bayes' rule to 
both top and bottom

p(θ* |D)
p(θ |D) =

p(D |θ*) p(θ*)
p(D)

p(D |θ) p(θ)
p(D)

= p(D |θ*) p(θ*)
p(D |θ) p(θ)



MCMC proposals, steps or moves
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"good" proposal 
distribution

target
distribution

The target is usually the posterior distribution

The proposal distribution 
is used by the robot to 
choose the next spot to 
step, and is separate from 
the target distribution.



Summarising the posterior
Tracer is an amazing program for exploring MCMC output.
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Summarising the posterior
Tracer is an amazing program for exploring MCMC output.
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Summarising the posterior

Summarising trees is much 
more challenging. 


Presenting a single summary 
tree can sometimes be 
misleading.
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Summarising the posterior

The 95% highest posterior density (HPD): the shortest interval that contains 95% 
of the posterior probability. The Bayesian equivalent of the 95% confidence interval.


Marginal posterior density: the probability of a parameter regardless of the value 
of the others,

represented by the histogram.


Maximum clade credibility (MCC) tree: the tree in the posterior sample that has 
the highest posterior probability (i.e. clade support) across all nodes.


For more on issues associated with summary tree methods see O’Reilly & Donoghue (2018) Sys Bio.
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Convergence
How do you know if you’ve run the run the chain long enough? 

You don’t! But there are some clues.
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Good mixing



Convergence
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Bad mixing

How do you know if you’ve run the run the chain long enough? 

You don’t! But there are some clues.



Convergence
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Better mixing

How do you know if you’ve run the run the chain long enough? 

You don’t! But there are some clues.



Summary from this part

Bayesian inference provides a flexible and intuitive way to incorporate and 
represent uncertainty.


MCMC is an elegant algorithm trick to infer the posterior distribution.


It samples values directly from posterior in proportion to how probable they are, 
resulting in a histogram, which provides a good approximation of the posterior.
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Bayesian tree inference using RevBayes
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

# prior on the tree topology

topology ~ dnUniformTopology(taxa)


# prior on the branch lengths

for (i in 1:num_branches) {

   br_lens[i] ~ dnExponential(10)

   moves.append( mvScale(br_lens[i]) )

}


tree := treeAssembly(topology, br_lens)


TL := sum(br_lens) 

# 4 state rate maxtrix (JC model)

Q <- fnJC(4)


# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type = "DNA")

seq.clamp(data)
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Exercise 4: Bayesian tree inference
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