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Worked in both paleo ano GIGSgO
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compu’ro’riono| bio\ogy groups

nterested in phylogenetic approaches

that can be opp|ieo| to the tossil recoro

/ hypothesis testing in deep fime

— all of the models are opp\icob\e to
non-paleo problems, e.g., epidemiology,

microbio|ogy, orcqoeo|ogy, cell bio|ogy
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development analysis

— Create and implement new — Estimate parameters & test

ohylogenetic methods hypotheses trom real fossil data

BEAST2 & RevBayes

1001... ATAT...
1101... TCAC...
0100... ????...

The Paleobiology Database

simulations

— Generate fake data to test
methods

B
Species 1010111...
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On turning ber up in ber Neft, with the Plough,
November, 1783,

EE, flecket, cowran, tim’rous Jeaffie,
O, what a panic’s in thy breaftie!
Thou need na ftart awa fae hafty,
Wi’ bickering brattle?
¥ wad be laith to rin an’ chafe thee,
Wi murd’ring paitle!

I'm truly forry Man’s dominion
Has broken Nature’s focial union,
Ax’ juftifies that ill opinion,
‘Which makes thee ftartle,
At me, thy poor, earth-born companion,
Ar’ fellow-mortal !
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Phylogenetics allows us to study the relationships

between entities that are related via an evo\uﬂonory

process.

We can opp\y the same princio\es o any scenario
where we have hierarchical (OI ncestor & descendonf)

re\o’rionships.

he data is Qnyfhmg that can tell us about the

re\o’rionships between individuals.



/\/ofhing N bio/ogy makes sense except in the /igh1L ot evolution

— Theodosius Dobzhansky (1973)

/\/ofhing in evolution makes sense except when seen in the /ighf of

ohylogeny — Jay M. Savage (1997)



A phylogenetic tree captures part
of evolutionary history that is
otherwise not direcﬂy observable.

We can date trees by Combining
character dato (mo\ecu\or or
morpho|ogico\) & temporal
evidence.
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Malagasy and
Indian cichlids
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South American cichlids
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~volutionary relationships
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molecular time () =

fossil time scale for cichlid origin

—volutionary relationships o — =T

Timing of diversitication events ...

1.2
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Geological context

1.0 —

Rates of phenofypic evolution S

)iVQI’Si]EiCOﬁOﬂ rates (origination & extinction)

0.4 —
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o
o))
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L. Cretaceous|Pal.| Eocene |Oli.

Mioc.

Adapted from Friedmann et al. 2013. PRSB 10 200 150 100 50

geological time (Ma)

Malagasy and
Indian cichlids

South American cichlids

African cichlids

cichlid-bearing
fossil horizons

fish-bearing
fossil horizons



. Warning — phylogenetics® is really really hard.

We're sting a lot of a relative small amount of data, among other reasons.

Phylogenetics is also full of jargon, so don't hesitate to ask questions!

*and palaeobiology in genero

1
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Dibrachicystis
purujoensis

Cambrian stalked echinoderms show
unexpecfed p/osficify of arm construction

Zamora & Smith. 2012. Proc B



Day 1

Day 2
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Some useful terms. Note: genetic distance = rate x time

A
B .
e internal nodes or MRCAs
C
tips or leaves
root D — branches or edges
E

branch lengths = genetic distance OR time
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Tip tor orientation: look for the root!

l A B C D E A
| B

D
£ )t T ®
@ Q
—— = —o + 3
A B C D E T £

time >

Computer science, maths Geology Evolutionary biology
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Phy\ogenies are unrooted by detault, because phy\ogeneﬂc characters don't
contain information about the direction of time.

Image source Philio Donoghue
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We have to tind a way of

breo KINg one of the branches

N Two, where the break

represents the oldest

divergence in the tree.

The most common approach

IS TO use an outgroup — a

taxon that we know is more

.|_

distantly related than any of

ne taxa within the ingroup.

%
"SR

outgroup
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Image source Philio Donoghue



By defau

rooted.

We neec

1 phy\ogemes are not

an outgroup OR o

model t

nat incorporates time.
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Use Art Poon's online tool to explore this further.
Click here to learn more about reoding frees.



http://slides.filogeneti.ca/include/rooting.html
https://artic.network/how-to-read-a-tree.html

How many possib\e trees are there for 3 species’?

taxa A

taxa A taxa B taxa C

taxa C taxa B taxa A taxa A
taxa C taxa C taxa B

taxa B
unrooted =1 rooted = 3

taxa A taxa A

taxa B taxa C

taxa C taxa B

. Note these 2 trees are the samel B and C are more closely related.



Character taxa A taxaB taxaC taxaD taxaFE

Lungs 0 1 1 1 0
Jaws 0 1 1 1 1
Feathers 0 0 1 0 0
Gizzard 0 0 1 1 0
Fur 0 1 0 0 0

How many possib\e unrooted or rooted trees are there?

What do you think the correct rooted tree should be?

Write down your logic.
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# species # unrooted trees

# rooted trees

1
3
15
105
945
10395
105
0 2027025

— O 00O NO UL B~ W

3
{ e
105
945
10395
135135
2027025
34459425




What do you think the correct tree should be?

_ﬁ'{ E)o\o\ - A@Dgoﬁ){%& =

L&MM \0065 An\-t.\opb \C A\\.\QO\'\’Q\( LMM \oa\"as An\C\ope—

\c A\\\ﬂo\-\'o\(

A = Lamprey, B = Antelope, C = Bald eagle,

22

D = Alligator,

- = Sea bass

Source Khan Academy



https://www.khanacademy.org/science/biology/her/tree-of-life/a/building-an-evolutionary-tree

How do we find the “best” tree?

better

worse

Image source Tracy Heath
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What do you think the correct tree should be?

Write down your logic.
— Most people intuitively assume the tree with the fewest changes is correct.

— This approach to tree building is called parsimony.

24



Method Criterion (tree score)

Maximum parsimony  Minimum number of changes

Maximum likelinood Log likelihood score, optimised over
branch lengths and model parameters

Bayesian Posterior probability, integrating over
branch lengths and model parameters

Both maximum likelihood and Bayesian inference are model-
based approaches.

25



In reality, we never know the true tree.

Maximum parsimony selects the tree (or trees) that require the fewest number
ofchqnges

Given two trees, the one mMiNnimMising the oarsimony score (i.e, the minimum

number of changes) is the better one.

/D@MW%‘;} A%M’

Lavnprey boass Ante\ope eao \c A\\\Qod'o( Lavnprey loass Anke\ope eaaq\c A\\\Qa\'\’o\(

/ \ \ /
@ >/ Branch lengths = number of
X/ observed changes or steps.

/.
@

This Yree 1S less

POCSIWONIoUS
Hhan the one ooove
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Based on the oaArsimony princip\e: assume simp\er exp\anoﬁrions are better than

complex ones. The greatest advantage of parsimony is its beautiful simplicity

(Yang, 2014).

It is Compumﬂonoﬂy fast and often produces sensible results.

Parsimony does not make explicit assumptions about the evolutionary process

that generor'ed the observed data. Some have orgued that parsimony 1Is

‘assumption free” — its notl Parsimony makes implicit assumptions.

27



Exercise I: intro to phylogenetics using R



omop\asy: a trait that is found in two species, but not in their common ancestor.

The bluebird,

fruit bat: 3 dif
'ndependenﬂy \ighfenec

erent vertebrat

Pterosaur (extinct) ano

€S

bones ano
transtormed hands into wings.

Image source Convergence Evolution: an introduction
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https://convergentevolution.wordpress.com/2015/04/16/hello-world/

TCATCC| Species B

Ancestral TCATCC| Species C
sequence TCATCC

TGATCC| Species A

C to G mutation
at position 2

f we assume the simp\es’r solution is correct, this could mislead our inference if

the under\ying process IS more Comp\ex.

30



C to G mutation |
at position 2 TGATCC| Species A

GtoC

Ancestral TCATCC| SpeciesB
sequence TCATCC

TCATCC| Species C

CtoG GtoC

f we assume the simp\es’r solution is correct, this could mislead our inference it

the under\ying process IS more Comp\ex.

31



When we build a tree using parsimony and observe convergence, ad hoc
exp\onoﬁons (e.g., convergence, reversals) are required To exp\ain the patfterns.

n the case of birds, pTerosaurs anc bats, we know based on other anatomical
features that these taxa are diS"on"\y re\oﬁred, but convergence can intertere with

our obi\ify to recover the correct tree. In tact, this is very common.

Parsimo

Yy

IS consist

data. Fe

iInconsistent

se

ent

nas been demonstrated to be statistically inconsistent. An estimator
it it is guaranteed to get the correct answer with an infinite amount of
nstein (1978) demonstrated that in some situations, parsimony is

e, It will recover the wrong tree, even with an infinite amount ot data.
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https://www.jstor.org/stable/2412923

[+ you have \ong branches (due to higher rates ot evolution), the probobi\iTy of

mis\eocing pArsiIMony due to convergence |Is much higher.

A A

o N
QQ ‘ 0.01\€;
T T

Image source Tracy Heath
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Parsim

ony is almost guarao

nteed to ge

O‘OCQ

two long branches (-

make -

I,

‘he problem worse, mo

3) toget

T1 true tree T3

ner As siste

ol

KING this Qpprooch ST

d

- the tree below wrong. It will incorrectly

neages. More data will

tistically inconsistent.

Tl parsimony tree I3

54

Image source Tracy Heath



¢ Correct tree

p'<qd-9)
¢ Inferred tree P
. F
CONSISTENT
Here, the branch lengths 304 0 % /@
represent probo oi\i"y (p g) of "

Chonge o\ong that branch.

Felsenstein, Inferring Phylogenies (2004)
Image source Tracy Heath

c.t. Ecdysozoa vs. Coelomata Telford et al. (2005)
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https://www.sciencedirect.com/science/article/pii/S0960982205003714

mportant: this issue can affect all tree bui|o|ing methods! And all types of data

(e.g, DNA, morphology).

Things that (sometin

es) he\p: hig

N quo\ify data, increased taxon samp\ing INC.

shorter branching ou
evo\uﬂonory rates.

‘groups, Moc

els that more reliably capture the variation in

56



Model-based approaches assume an explicit model of molecular or

morphological evolution.

£ evo\uﬂonory distance is re\oﬁrive\y small, model based opprooches and

paArsimony will often recover the same tree.

As distance increases, the amount of homop\osy (i.e,, convergent or porQHe\
Chomges) also increases, pArsimMony Is more \ike\y to recover the wrong tree.

57



Ecdysozoa
D2 Lophotrochozoa

Chordata

Xenambulacraria
Chordata m o
Xenambulacraria *’

Ecdysozoa *
Lophotrochozoa f oM

e o D1
— Ecdysozoa Ecdysozoa
L—Lophotrochozoa Lophotrochozoa
O Utg rou p — Chordata Xenambulacraria
L Xenambulacraria Chordata
Outgroup Outgroup

Kop|i et al. (2021) Science Advances - SUpport for deuterostomes (chordates + echinoderms) varies across

datasets and ono|yses under ditferent models, prob0b|y caused by the exfreme|y short (blue) branch
associated with this group.
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https://www.science.org/doi/10.1126/sciadv.abe2741

Parsimony is simple and intuitive but makes implicit assumptions about the
evo|uﬂono|ry process.

Next, we'll exp\ore model-based Qpprooches — these are more tlexible and
make explicit assumptions = it's very important you to try to understand what
these arel

59



What is a statistical model? When is an equation a model?
What is a mechanistic model?

What is the difference between an o\gori’rhm and a model?

40



A statistical model is a type of model that includes a set of assumptions

about the data-generating process.

'+ should be possib\e to simulate data under the assumptions of the model.

t we're lucky, we mighf also be able to estimate parameters under the

model®. This isn't always possible because some models are too complex

*A fancy way of saying this is, "we can perform interence under the model”.

4]


https://en.wikipedia.org/wiki/Statistical_model

In(homerange)

492

The solid black line is a linear

regression line.

We can estimate the parameters of

the regression model.

Y =XB + €

t's also straighttforward to

simulate data under this model.

Image source Harmon (2019)


https://lukejharmon.github.io/pcm/chapter5_mvbm/

Four fundamental classes of taxa

confined to interval

only bottom boundary crossed

bl-

only top boundary crossed

both boundaries crossed

Time interval of interest

Foote (2000)

Ft

bt

43

The boundary-crosser and
three-timer metrics are not

mode\s.

They provide a clever way of
approximating origination and
extinction rates (and often perform
well), but they don't describe the

data generating processes.



Mechanistic or process

based models are based on ‘physical principles’. They

describe the data as o

biological meaning.

A regressio

" model is not mecha

and Y but -

he parameters don't

function of a set of paramerters that have a Jromgib|e

nistic — it describes the relationship between X

have a biological meaning.

Many of the models we use in statistical ohylogenetics are mechanistic models,

e.g. ’rhey migh’r include originarion, exftincrion and somp\ing parameters exp iciHy.

Note the definition of ditferent model types varies @ lot. The above is Just my take

on Jrhings from o very phy\ogeneﬁcs perspective.

44


https://en.wikipedia.org/wiki/Substitution_model

An Q\gorifhm IS A precise rule (or set of rules) specifying how to solve some
oroblem.

1 =1 for 1 in range(1l,11):
while 1 < 11: print (1)
print (1)

1 =1+ 1

A|gori+hms are used in phy\ogeneﬂcs for all sorts of tasks, inc. seorching free
space or fraversing frees.

45


https://www.cs.cmu.edu/~15110-n15/lectures/unit03-Algorithm-1.pdf

Models can account for the possibi\i’ry that mu\’rip\e Chomges occur at the same site.

C to G mutation

at position 2
GtoC
Ancestral

sequence TCATCC

CtoG GtoC

In the absence of any information abou:
expec’red substitutions per site, indepenc

TGATCC

TCATCC

TCATCC

Species A

Branch lengths = expected
Species B number of changes per site
Species C

- TiIme, rates are re\oﬁve, l.e., rates are

ent of any fime unit.

46



Statistically more souno

Can test and update explicit assumptions

There are many more things we can do with models in palaeobiology!
Computationally slow (often)

Results are sensitive to model choice

Yang (2014) Molecular Evolution: A Statistical Approach

47



Phylogenetic data



Two main sources of data tor building trees:
1. Molecular seguences (nucleotides or oroteins)

2. Morphological characters (discrete or continuous)

-irst we need to collect the data and establish homology.

49



Homology - similarity due to shared ancestry

Human Dog Horse Bat Bird Seal

® Scapula

© Humerus

O Radius
© Ulna

O Carpals
® Metacarpals
@ Phalanges

—ach coloured bone is a homologous structure.

50



Nucleotides provide a four letter

O phobef we can use to generate

frees.

Genes encode amino acids

(proteins) that in turn provide a 20

— = Adenine
1 = Thymine
1 = Cytosine

2 = Guanine

= Phosphate

letter o\phobe’r.

Protein sequences are typically

used for more distant evo utionary
re\cﬁionships.

51

backbone

Ist codon position

2nd codon position

U & A G
UuU UCU) UAU UGU U
Tl 10 . v wl s
UUA}Leu UCA UAA Stop|UGA Stop| A
UUG UCG | UAG Stop|UGG Trp |G
CUU CCU CAUY... |ceu U
STl | | o7 - - CAC}H'S CGC |1 | €
CUA CCA CAA }GI - [cea ™9 | A
CUG | ale CAG e G
AUU ) ACU AAU AGU U
AUC tlle |ACC [ AAC}Asn Acsc}Ser C
AUA | ACA AAA } Lys |AGA } Arg | A
AUG~ Met | ACG | AAG AGG G
GUU ey GAU GGU U
GUC [ |GCC [ c;Ac}'e‘sp GGC |, | C
GUA GCA GAA}GIU A [ | &
GUG GEG | GAG GEE G

uoljisod uopod pig



hylogenomics pipeline

00 | Flu.nex
@ Geneious C  Nucleotide < Q
Genetic Code Colouring Data type Search
J 385 390 395 400 405 410 415 420 425 430 435 440 445 I451
MSE Ho: . . . ! | - N Al L . - N AT AT A - - .
AG, CAT AACTTCTTGCT TCATG GCGCCTTAGCTCAGH
SUCK o0 RCARRARGRCHE ARG VI T e S
MALLARD ' AGA GA AAGTTCTTGG TGAAG AGGGGTGAG G
CHICKEN™ AGAA GA GTTCTTGG! GAAG GGAGCTGAGH G
DUCK GUXA - AG GA GTTCTTCG! G, GGGCTGAGH el
CK HEK WF :AG GA! G TGG GAAG GGCGTGAGH G
SWINE AN :AG GA GTTCTTGG GAAGH GGGCTGAG tel
DUCK VIE' 3AG GA G Yetel GAAGH GGGCTGAGH tel
HONGKONG 3AG GAT GTTCTTGG GATG GCGGTGAG G
GOOSE SH, AG GAT AAGTTCTTGGT GAAG GGGGTGAGCTCAG
TREESPAR AGA GGAT: AAGTTCTTGGT TGATGH GGGGTGAGCTCAG
PEREGRIN AGA GAT AAGTTCTTGGT TGAAG GGGGTGAGCTCAG!
TREESPAR' iARA GAT AAGTTCTTCCT TGAAG GGCCTCAGCTCAG
RRNEERNS ASA GRAT bttt TCARG oy Yeletereb g Yeteb ol Yel
HUMAN VI’ :AG GA AAGTTCTTGG' TGAAGH AGCGCCTGAG el
TREESPAR AG GA GT Yetel GAAG GGGCTGAGH G
CHICKEN | AG GA el Yetel GGAG GGGCTGAG G
CHICKEN" :AG GA' el TGG! GATG GGGGTGAG G
VIETNAM™ :AG GA el Yetel GAAGH GGAGTGAG el
GOOSE HOU :AG GAT GTTCTTGG GATG GGGGTTAG tel
DUCK HON! ;AG GAT GTTCTTGGT TGATG CAGGGGTTAGCTCAG
DUCKVIE' AG GAT AAGTTCTTGGT TGAAG PAGGAGTGAGCTCAG
MALLARD ' AGA GAT AAGTTCTTGGT TGAAG! PAGGGGTGAGCTCAG!
CHICKEN™ ;AGA GAT AAGTTCTTGGT TGAAG GGAGTGAGCTCAG
DUCK GUA 3AG GAT AAGTTCTTGGT TGA GGGGTGAGCTCAG
iAG. GAT GCTCTTGG! GAAGH GGGGTGAG G
1 SAG GA AG GG TCAAG AGCGGTCAGH el
DUCK J1E'( :CA GA GITCTTCC TCAAG ACCCCTCACCTCAC
EO0SE ST imG R e CRRG R I
TREESPAR GGA' G ! GGG
Base 408 (T) in sequence 29: DUCK_HONGKONG_Y283_1997

MuHip\e sequence o|ignmenfs are the
porimary input for molecular phy\ogeneﬂcs

52

Taxon 1 Taxon 2 Taxon 3 Taxon 4

Tissue =
collection
Y
Sequencing g e o -
into reads o "= — — - T —
Y
Assembly and G c— —— ——
V Locus 1 Locus 2 Locus n
Taxon 1 eess——————  ——— ——
sequence $axon g I . g =]
alianment axon C— s |
g Taxon 4 TS —
v Gene tree 1 Gene tree 2 Gene tree n
) Taxon 1
Handl.lng - Taxon 2
of loci Taxon 3
Taxon 4
Y
Taxon 1
Species tree Taxon 2
inference Taxon 3
Taxon 4

Current Biology

Duché ne (2021) Phylogenomics Primer



Also known as substitution / site / character models. (-\

They capture the process of character evolution.

Allow us to ask, what is the probobi\ify of fransitioning from one state to
another over time?

53



What assumptions might you want to
incorporate into a model of sequence
evolution?

e.g., would all sites evolve at the same rate?



Using the substitution model we can calculate the probability of fransitioning

oetween ditferent nucleotides. p is the substitution rate.

—HA  HAG HAC  HAT

8 — HGA  —HG  HGC  HGT of changing between two states over a

tig . lge | mmivi@ & Uigr
Phy | e L laEe L wm 0

— We can calculate the the probability

glven branch \engfhs.

The \onger the interval of time has pASsT, the more \ike\y we are to observe a Chomge.

You can explore this principle via this app by Paul Lewis.
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https://molevolworkshop.github.io/applets/jc-transition-probabilities/

The simplest model of sequence evolution.

Assumptions: equ0|| mutation rates and equo\
base frequencies.

Base frequencies are the proportion of each

nucleotide within the dataset.

56
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species or gene.

T a given nucleoti

dataset at a low -

Nucleotides (ATCG) occur at different

':requencies depending on the group of

de appears in our

‘requency, we dre less

\ike\y to observe a transition to that state.

G TR assumptions
AND unequal bo

: unequ0| mutation rates
se frequencies.
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Q -

u HAGTG MACTC HMATTT
HGATA & HGCTTC MGTTT
HCATA HCGTG i HCTTT
HTATA  HUTGTTG HTCTC i

Note the rates are symmetric — e.g,

the rate of change between A and T,
is the same in both directions — but
the proportion of each character state
also atfects the probobi\ify of chomge.



Another way of visualising substitution models.

JC GTR
G A 4+—> G
T C

Line width represents the relative rate of change between ditferent steps.

A —

4t T

C —

58



Equal base frequencies (3 df) | . IC

Vs . . | , _
IC Bl K80 i et ' HKY SYM GTR
Base frequenas T T ARtcTGTT n A T ARcTGTr ¢ T ARG T
Subgimtionrates p of of3 HORGp s ile Mo Hops s
Transition rate equals i IC _ , , 81
Transversion rate (1df) A Vs ~ e ; e Vs
R R
Equal transition rates and HKY
Equal transversion rates (4 df) Vg Vs
' SYM GTR
Rates equal JC - | F81 HKY GTR
among sites (l dfy , VS _ | v§ Vs vs§ s
J C+l" K80+T SYM+T F81+T HKY+I" - GTR+I'
No invariable C JC+1" K80+I" SYM _ SYM+F F81  F81+I"  HKY HKY+I' GIR GTR+I
sites  (1df) - vs % | , , v§s o .vs VS VS Vs Vs
IC+1 JC+I+F K80+l K80+l+l" +l SYM+!+I' F81+1 F8l+I+I" HKY+l HKY+I+I' GTR+l GTR+I+I"
A A A/ \R A A AQNR A

JCIC+1 JC+T JC+I+1" KBO K80+l K&)H K8O+I+I" SYM SYM+I SY M+FSYM+I+I" F81F81+1 F8l+[ F8l+l+ " HKY HKY+| HKY+I HKY+k | GTR GTR+IGTR+I GTR+I+I

5 Posada & Crandall (1998) Bioinformatics



A very brief introduction to maximum

likelihood




Method Criterion (tree score)

Maximum parsimony  Minimum number of changes

Maximum likelinood Log likelihood score, optimised over
branch lengths and model parameters

Bayesian Posterior probability, integrating over
branch lengths and model parameters

better

T4
_T5 T
A T6 >
T7 T3
T4
____T5

e | O
e [ 7

worse
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Assume an exp\icif model of character evolution.

Maximum likelihood is o method for estimating unknown parameters in a
model. The tree that maximises the likelihood is the best one.

P ( | model, tree )

62



1. We first propose a topology with branch lengths and then calculate the
ikelihood (’raking into account al sites).

2. We then Propose a new tree or set of branch \engfhs and recalculate the
ikelihood. It the likelihood is >, we accept this tree as being better.

3. Proceed until we can't improve the likelihood any further.

better

worse

63



Exercise 2: intro to phylogenetics using R



Introduction to graphical models and
RevBayes




66

B

s
[FTIUL{ALEL

e
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Is there a better way?
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Flexible model specification Computational efficiency

— Availabi Ty of (common) models — Fast likelihood calculators

— Extendability — Efficient (MCMC) algorithms
Easy to learn here's a huge team behind the
— Well structured model specitication scenes.

— Explicit models

— Documentation, examples and tutorials

Hshna et al. 2016. Sys Bio
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Graphical models provide tools for visually and computationally

representing Comp|e><, pqromefer—rich probabi\isﬂc models.

We can depicf the conditional dependence structure of various
parameters and other random variables.

Hshna et al. 2014. Sys Bio
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a) fixed-value variables
a) Constant node

|:| b) random variables that depend on other
O

b) Stochastic node variables

c) variables determined by a speci'zic

c) Deterministic node | | |
function oop||eo| to another variable

O d) Clamped node (transtormations)

(observed)
........ - d) observed stochastic variables (dom)

e) Plate e) replication over a set of variables
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Table 1: Rev assignment operators, clamp function, and plate/loop syntax.
Operator Variable

<- constant variable
~ stochastic variable
P = deterministic variable
node.clamp(data) clamped variable
= inference (i.e., non-model) variable

for(i in 1:N){...} plate
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Exercise 3: intro to the Rev language



Introduction to Bayesian inference and MCMC



Method Criterion (tree score)

Maximum parsimony  Minimum number of changes

Maximum likelinood Log likelihood score, optimised over
branch lengths and model parameters

Bayesian Posterior probability, integrating over
branch lengths and model parameters

better

T4
_T5 T
A T6 R
T7 T3
T4
____T5

e | O
e [ 7

worse
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ikelihood priors

P( | model ) P( model )
P( model | ) =
P( )

posterior marginal
orobability of
the dato



P ( | parameters, model ) ¢ the model used to calculate the likelihood.

P ( parameters | model ) + this represents our prior knowledge of the model
paramerters.

P ( model ) & the probobi\i’ry of the data in’regro’red over all possib\e
oarameter values. Can be thought of as a normalising constant (i.e., ensuring

the poOsterior sums to one).

D ( parameters \ , mode ) — the posterior retlects our combined
mow\edge based on the likelihood and the Oriors.
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The output of a Bayesian phylogenetic analysis is a
distribution of trees (+ any other estimated parameters)

11
12
13
T4
15 -

i L
f_ﬁ*f."’-,a‘i",‘-"lf;:-?._:;. .
NN S

AT
+T 1T N A WA
| -"’f ) /! 'fi?"l Iy I."-Il y "\.'."...-.

better

worse
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In phylogenetics, probabilities are not

normoHy discrete (i.e, representec by a

record). Instead we typical

probability densities.

single value) and we're often dealing with
a lot of uncertainty (esp. in the fossil

v work with

83

Pr density




The x-axis represents the

value of our parameter A.

The y-axis is relative probability.

Pr density

The height of the distribution retlects
the relative probobi\i’ry of a given

range of parameter values. A\. is drawn from an

exponential distribution

A
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0.30
|

mean=1.732
- variance=3
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o
o
o
S
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Copyright © 2018 Paul O. Lewis

A. drawn from an gammo
distribution

60

85

Node age (calibration)
densities



Probobi\ify densities o\reody introduce some COmp\exier. Remember the

posterior IS NOot usuo”y a point estimarte (i.e, O sing\e value) but o range of
values.

The morgina\ probobi\ify of the data is also very Jrric:ky to calculate.

P ( | model )

Co\cu\oﬂring this requires Jqumg into account all pOssib\e alternative parameter
combinations (e.g, all possible trees).

This makes it chQHenging to calculate the posterior an\y’ricoHy (i.e, exocﬂy).
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A group of o\gorifhms for approximarting the posterior distribution (also known
as samplers).

Markov chain means the progress of the o\gori’rhm doesn'’t depend on Ifs past.

Monte Carlo (nomed for the casino in Monaco) methods estimate a distribution
via random sampling.

We use this o\gori’rhm to visit different regions the parameter space. The

number of times a given region 1s visited will be in poroportion to Its posterior
orobability.

Click here tor a little bit of history.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874253/

posterior

prior .- """

0.0

0.2 0.4 0.6 0.8 1.0
Copyright © 2018 Paul O. Lewis

The aim is to produce a histogram that
orovides a good approximarion of the

nDosterior.

The most widely used MCMC algorithm
in phylogenetics is the Metropolis

astings o\gorﬁrhm.
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MCMC robot's rules

Drastic “off the cliff”’

downhill steps are almost
never accepted

Slightly downhill steps
are usually accepted

Uphill steps are
always accepted

Copyright © 2018 Paul O. Lewis
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Actual rules (Metropolis algorithm)

Slightly downhill steps are usually Drastic “off the cliff” downhill

accepted because R is near | steps are almost never accepted
because R is near 0

Currently at 6.2 m

Proposed at 5.7 m
R =5.7/6.2 =0.92

Currently at 6.2 m
Proposed at 0.2 m

R=0.2/6.2 =0.03

gy
gy
Ny
L]
......
y
by
"y
]

Currently at 1.0 m
Proposed at 2.3 m

R=23/1.0=2.3

Uphill steps are always
accepted because R > |

Metropolis et al. 1953. Equation of state calculations by fast
computing machines. J. Chem. Physics 21(6):1087-1092.
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When calculating the ratio (R) of posterior densities, the marginal
probability of the data cancels.

p(D|6%) p(6*)
pl@*\D) — ppy  _ pDI[O¥) p(0*)

p@|D)  PLRIOPO  p(D|6) p(H)
p)

Posterior Apply Bayes' rule to Likelihood Prior
odds both top and bottom ratio odds

Copyright © 2018 Paul O. Lewis



MCMC proposals, steps or moves

The proposal distribution
is used by the robot to
choose the next spot to

step, and is separate from
the target distribution.

"sood"” proposal
distribution

The target is usually the posterior distribution

Copyright © 2018 Paul O. Lewis
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Summarising the posterior

Tracer is an amazing program for exploring MCMC output.

® O Tracer
Trace Files: A Marginal Density | Joint-Marginal ~ #ad Trace |
Trace File States Burn-In
primate-mtDNA ... | 10000000 1000000 Summary Statistic clockRate
mean 0.0116
= T stderr of mean 4.5711E-5
n stdev 1.9587E-3
Traces: variance 3.8363E-6
Statistic Mean ESS median 0.0115
posterior -5515.... 2387 R value range [5.8576E-3, 0.022]
likelihood -5441.... 2349 R geometric mean 0.0115
prior -73.169 1379 R 95% HPD interval [7.9933E-3, 0.0156)
treelLikelihood.1stpos -1383.... 3189 R auto-correlation time (ACT) 4902.9582
treeLikelihood.2ndpos -952.37 2885 R effective sample size (ESS) 1835.8
treeLikelihood.3rdpos -2148.... 1687 R number of samples 9001
treeLikelihood.noncod... -957.267 1731 R
TreeHeight 83.827 1409 R -
mutationRate.1stpos 0.45 852 R
mutationRate.2ndpos 0.182 714 R 500
mutationRate.3rdpos 2.949 646 R
mutationRate.noncoding 0.346 1344 R
gammaShape.1stpos 0.496 889 R
gammaShape.2ndpos  0.575 911 R 400-
gammaShape.3rdpos 3.022 726 R
gammaShape.noncodi... 0.244 1006 R
kappa.lstpos 6.235 719 R
kappa.2ndpos 8.5 1359 R
kappa.3rdpos 28.777 365 R 300-
kappa.noncoding 13.478 875 R >
CalibratedYuleModel -47.285 1755 R e
birthRateY 2.561E-2 3805 R 5
logP(mrca(human-chi... -0.731 9001 R g
mrcatime(human-chi... 5.949 8655 R Y- 200
clockRate  [1.161E-2 {1836 [R
100+
0 o
0.005 0.02 0.025
clockRate
Type: (R)eal (Dnt (C)at
s Setup...  Bins: 50 B
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Tracer is an amazing program for exploring MCMC output.

@] O Tracer
Trace Files: I Estimates # Joint-Marginal ~ Asd Trace
Trace File States Burn-In
primate-mtDNA _... | 10000000 1000000 Dapa KDE B
= Reload
) 250
Traces:
Statistic Mean ESS
posterior -5515.... 2387 R
likelihood -5441.... 2349 R
prior -73.169 1379 R
treeLikelihood.1stpos -1383.... 3189 R
treeLikelihood.2ndpos -952.37 2885 R 2001
treelLikelihood.3rdpos -2148.... 1687 R
treelLikelihood.noncod... -957.267 1731 R
TreeHeight 83.827 1409 R
mutationRate.1stpos 0.45 852 R
mutationRate.2ndpos 0.182 714 R
mutationRate.3rdpos 2.949 646 R
mutationRate.noncoding 0.346 1344 R 150
gammaShape.1stpos 0.496 889 R
gammasShape.2ndpos 0.575 911 R
gammaShape.3rdpos 3.022 726 R Z
gammasShape.noncodi... 0.244 1006 R - e
kappa.lstpos 6.235 719 R a
kappa.2ndpos 8.5 1359 R
kappa.3rdpos 28.777 365 R 100-
kappa.noncoding 13.478 875 R
CalibratedYuleModel -47.285 1755 R
birthRateY 2.561E-2 3805 R
logP(mrca(human-chi... -0.731 9001 R
mrcatime(human-chi... 5.949 8655 R
clockRate  [1.161E-2 (1836 |R|
504
0 : : - - : - - g .
0 0.005 0.01 0.015 0.02 0.025
primate-mtDNA_long.log
. (Real (Dnt (C)at
Type Setup...  Legend: None " Colour by:  Trace
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Heliconius cydno
melpomene clade

H. timareta
Silvaniform clade

H. melpomene

Summaris

. i
ng frees is much eratoclce V)

H. melpomene reference
sara clade -
/)

H. pardalinus

more chal enging.

Basal Heliconius

H. besckei
H. numata

H. doris

D

H. erato

resenting a single summary

H. e. demophoon reference

ree can sometimes be

H. erato H. himera hybrid
misleading.
H. hecalesia
H. telesiphe
H. demeter

== H. sara

Eueides tales

~— Agraulis vanillae

Image source Edelman et al. (2019) Science
95



The 95% highest posterior density (HPD): the shortest interval that contains 95%
of the posterior probqbi\ify. The Bayesian equivo\enf of the 95% contidence interval.

Marginal posterior density: the probability of a parameter regardless of the value
of the o’rhers,

represen’red by the his’rogrom.

Maximum clade credibility (MCC) tree: the tree in the posterior sample that has
the highes’r posterior probobi\i’ry (i.e. clade support) across all nodes.

For more on issues associated with summary tree methods see O'Reilly & Donoghue (2018) Sys Bio.
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ow do you know if you've run the run the chain long enough?

ou don'tl But there are some clues.

[ JON ] Tracer [ JON | Tracer
Trace Files: A Marginal Density | Joint-Marginal a4 Trace Trace Files: [l Estimates A Marginal Density | Joint-Marginal
Trace File States Burn-In Trace File States Burn-In
primate-mtDNA _... | 10000000 1000000 Summary Statistic clockRate primate-mtDNA _... [ 10000000 1000000 0.025
mean 0.0116
= e stderr of mean 4.5711E-5 = e
n stdev 1.9587E-3 )
Traces: variance 3.8363E-6 Traces:
Statistic Mean ESS median 0.0115 Statistic Mean ESS
posterior -5515.... 2387 R value range [5.8576E-3, 0.022] posterior -5515.... 2387 R
likelihood -5441.... 2349 R geometric mean 0.0115 likelihood -5441.... 2349 R
prior -73.169 1379 R 95% HPD interval [7.9933E-3, 0.0156] prior -73.169 1379 R
treeLikelihood. 1stpos -1383.... 3189 R auto-correlation time (ACT) 4902.9582 treeLikelihood.1stpos -1383.... 3189 R
treeLikelihood.2ndpos  -952.37 2885 R effective sample size (ESS) 1835.8 treeLikelihood.2ndpos  -952.37 2885 R 0.021
treeLikelihood.3rdpos  -2148.... 1687 R number of samples 9001 treeLikelihood.3rdpos  -2148.... 1687 R
treeLikelihood.noncod... -957.267 1731 R treeLikelihood.noncod... -957.267 1731 R
TreeHeight 83.827 1409 R R TreeHeight 83.827 1409 R
mutationRate.1stpos 0.45 852 R mutationRate. 1stpos 0.45 852 R
mutationRate.2ndpos 0.182 714 R 500 mutationRate.2ndpos 0.182 714 R 2
mutationRate.3rdpos 2.949 646 R mutationRate.3rdpos 2.949 646 R =
mutationRate.noncoding 0.346 1344 R mutationRate.noncoding 0.346 1344 R 5
gammaShape.1stpos 0.496 889 R gammaShape.1stpos 0.496 889 R =
gammaShape.2ndpos 0.575 911 R 4004 gammaShape.2ndpos 0.575 911 R ‘Z‘: 0.0154
gammaShape.3rdpos 3.022 726 R gammaShape.3rdpos 3.022 726 R Q ’
gammaShape.noncodi... 0.244 1006 R o gammaShape.noncodi... 0.244 1006 R a E
kappa.lstpos 6.235 719 R kappa.lstpos 6.235 719 R 9'3
kappa.2ndpos 8.5 1359 R kappa.2ndpos 8.5 1359 R g
kappa.3rdpos 28.777 365 R 300- kappa.3rdpos 28.777 365 R g
kappa.noncoding 13.478 875 R > kappa.noncoding 13.478 875 R
CalibratedYuleModel -47.285 1755 R e CalibratedYuleModel -47.285 1755 R
birthRateY 2.561E-2 3805 R E birthRateY 2.561E-2 3805 R
logP(mrca(human-chi... -0.731 9001 R g logP(mrca(human-chi... -0.731 9001 R
mrcatime(human-chi...  5.949 8655 R Y 2004 mrcatime(human-chi... 5.949 8655 R 0.014
|clockRate _[1.161E-2 [1836 R ] | clockRate _[1.161E-2 [1836 __[R|
1001
0.015 0.02 0.025 0005 2000000 4000000 6000000 8000000 10000000
clockRate State
Type: (Real (hnt (C)at Type: (Real (hnt (C)at
s Setup... - Bins: 50 ype ShowBurn-in | | Sampleonly - Drawline plot * Legend: = None * Colour by: | Trace file B

Good mixing

97



ow do you know if you've run the run the chain long enough?

ou don'tl But there are some clues.

[ JON )

Trace Files:

Trace File States Burn-In
tutorial_runl.log 200000 20000
= Reload

Traces:

Statistic Mean ESS
posterior -9115.... 22 R
likelihood -8937.... 20 R
prior -177.165 8 R
treeLikelihood -8937.... 20 R
TreeHeight 9.704 7 R
|clockRate  _[1.067E-2] ____[R]
freqParameter.1 0.263 13 R
freqParameter.2 0.249 35 R
freqParameter.3 0.239 19 R
freqParameter.4 0.25 24 R
rateAC 1 19 R
rateAG 0.91 23 R
rateAT 0.964 21 R
rateCG 0.975 13 R
rateGT 0.916 24 R
popSize 34.573 16 R
CoalescentConstant -158.016 9 R
Type: (Rjeal (hnt (C)at

Tracer [ NON ]
m A Marginal Density |4 Joint-Marginal  As4 Trace Trace Files:
Trace File States Burn-In
Summary Statistic clockRate tutorial_runl.log 200000 20000
mean 0.0107
stderr of mean 7.7591E-4 Reaed
stdev 2.4897E-3 n
variance 6.1985E-6 Traces:
median 0.0103 Statistic Mean ESS
value range [8.8632E-3, 0.0262] posterior -9115.... 22 R
geometric mean 0.0105 likelihood -8937.... 20 R
95% HPD interval [8.8632E-3, 0.0153] prior -177.165 8 R
auto-correlation time (ACT) 17677.7058 treeLikelihood -8937.... 20 R
effective sample size (ESS) 10.2 TreeHeight 9.704 7 R
number of samples 181 clockRate  [1.067E-2| [R]
freqParameter.1 0.263 13 R
N freqParameter.2 0.249 35 R
freqParameter.3 0.239 19 R
50 freqParameter.4 0.25 24 R
rateAC 1 19 R
rateAG 0.91 23 R
rateAT 0.964 21 R
40- rateCG 0.975 13 R
rateGT 0.916 24 R
popSize 34.573 16 R
CoalescentConstant -158.016 9 R
301
>
2
3
5]
S
Y- 201
107
l . I
0.02 0.025 0.03
clockRate
Type: (Real (hnt (O)at

200000

Tracer
Il Estimates A Marginal Density  |[# Joint-Marginal
0.03
0.025
0.02 ‘
o
&
—
c
2 |
[
=
B
S \
>
*0.0151 \
|
\‘ o
0.01 L En T\
0.005 T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000
State
Show Burn-in Sample only Draw line plot ~ Legend: = None  Colour by:  Trace file

Bad mixing
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Convergence

ow do you know if you Ve run the run the chain \ong enough?

ou don'tl But there are some clues.

[ NON ] Tracer
Trace Files: A Marginal Density |4 Joint-Marginal  As4 Trace
Trace File States Burn-In
tutorial_run3.log 1000000 100000 Summary Statistic clockRate
mean 0.01
= L stderr of mean 5.7965E-5
] stdev 4.9746E-4
Traces: variance 2.4747E-7
Statistic Mean ESS median 0.01
posterior -9105.56 204 R value range [8.7318E-3, 0.0119]
likelihood -8926.6 35 R geometric mean 0.01
prior -178.96 10! R 95% HPD interval [9.0351E-3, 0.011]
treeLikelihood -8926.6 356 R auto-correlation time (ACT) 12246.764
TreeHeight 9.86 38 R effective sample size (ESS) 73.6
(clockRate  [1.001E-2[  [R] number of samples 901
freqParameter.1 0.264 39 R
freqParameter.2 0.25 41 R n
freqParameter.3 0.24 43 R
freqParameter.4 0.245 57 R 40
rateAC 0.957 45 R
rateAG 0.873 33 R
rateAT 0.959 40 R 357
rateCG 0.954 24 R
rateGT 0.889 32 R
popSize 36.199 412 R 307
CoalescentConstant -159.906 87 R
251
3
v 20+
g
fro
154
101
5-
(Hul| 0
0.008 0.012 0.013
clockRate
Type: (Rjeal (C)at

Better mixing
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Type: (Rjeal (hnt

(C)at

Show Burn-in

| Sample only

Draw line plot

[ JON ] Tracer
Trace Files: [l Estimates A Marginal Densi # Joint-Marginal [ikic e
Trace File States Burn-In £ g Y [— K -
tutorial_run3.log 1000000 100000 0.012
= Reload
Traces:
Statistic Mean ESS |
posterior -9105.56 204 R 0.0115
likelihood -8926.6 356 R
prior -178.96 101 R
treeLikelihood -8926.6 356 R
TreeHeight 9.86 38 R
clockRate  _[1.001E-2[] ___[R] 0.011-
freqParameter.1 0.264 39 R
freqParameter.2 0.25 41 R
freqParameter.3 0.24 43 R | ‘
freqParameter.4 0.245 57 R
rateAC 0.957 45 R
rateAG 0.873 33 R 2001057 \
rateAT 0.959 40 R b ‘
rateCG 0.954 24 R = ‘ \ |
rateGT 0.889 32 R =i I
popSize 36.199 412 R £
CoalescentConstant ~ -159.906 87 R g oot | | il | | ‘ ‘ ‘
= ’ ‘ (
0.0095 ‘ ' \ ‘ ‘ M |)
0.009+
0.0085 T v y T T T y T T
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

State

 Legend:  None B " Colour by: = Trace file B




Bayesian inference provides a flexible and intuitive way To Incorporate and

represent uncertainty.

MCMC is an elegant algorithm trick to infer the posterior distribution.

't samples values directly t
resuHing N O his’rogram, W

OM

nich

Dosterior In proporftion to how probab\e Jrhey are,

orovides o good approximarion of the posterior.
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Bayesian tree inference using RevBayes



Exponential :

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch lengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_1lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Exponential :

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch lengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_1lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Exponential :

Uniform

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch Llengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_1lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Exponential :

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch lengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Exponential :

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch lengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_1lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Uniform

PhyloCTMC

JC

# prior on the tree topology
topology ~ dnUniformTopology(taxa)

# prior on the branch lengths

for (i in 1:num_branches) {
br_lens[i] ~ dnExponential(10)
moves.append( mvScale(br_lens[i]) )

}

tree := treeAssembly(topology, br_lens)
TL := sum(br_1lens)

# 4 state rate maxtrix (JC model)
Q <- fnJC(4)

# attach the model to your sequence data

seq ~ dnPhyloCTMC(tree = tree, Q = Q, type

seq.clamp(data)

IIDNAII )



Exercise 4: Bayesian tree inference
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