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I Part 5 objectives

the molecular clock hypothesis

a framework for Bayesian
molecular dating

strict and relaxed clock models

node dating
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The molecular clock



I Telling evolutionary time: motivation
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Claramunt et al. Science Advances — A new time tree reveals Earth history’s
imprint on the evolution of modern birds
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https://advances.sciencemag.org/content/1/11/e1501005

I Telling evolutionary time: motivation
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https://advances.sciencemag.org/content/1/11/e1501005

I Molecular (or morphological) characters are not
independently informative about time
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Slow rate, long interval OR fast rate, short interval?
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I Molecular (or morphological) characters are not
independently informative about time
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I The molecular clock hypothesis
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Zuckerkandl & Pauling ( ) — Molecules as documents of evolutionary history.

Morgan ( ) — A history of the molecular clock.
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http://web.gps.caltech.edu/~tsai/files/GreatPapers/ZuckerkandlPauling_1965.pdf
https://www.jstor.org/stable/4331476

I If we have independent evidence of time, we can
calibrate the substitution rate
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Temporal evidence of divergence for one species pair let's
us calibrate the average rate of molecular evolution...
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I If we have independent evidence of time, we can
calibrate the substitution rate
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...and use this to extrapolate the divergence times for
other species pairs.
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I The molecular clock: challenges

Many variables contribute to variation in the substitution

rate.
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https://lindellb.files.wordpress.com/2015/03/bromham-plantrates-amnat15.pdf

I The molecular clock: challenges

The molecular clock is not constant over time.

+ Rates vary across taxa / time / genes / sites within the
same gene
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I The molecular clock: challenges

The molecular clock is not constant over time.
* Rates vary across taxa / time / genes / sites within the
same gene
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The molecular clock is not constant over time.

+ Rates vary across taxa / time / genes / sites within the
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I The molecular clock: challenges

The molecular clock is not constant over time.

+ Rates vary across taxa / time / genes / sites within the
same gene

Calibrations are rarely known precisely.

— we need a flexible statistical framework that deals well
with uncertainty.
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Bayesian inference



I Bayes' theorem

P (parameters | data, model ) =

posterior likelihood priors

/ /

P (data | parameters, model ) P ( parameters | model )
P (data | model)

marginal probability of the data
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I Bayes' theorem

P (data | parameters, model) < the model used to
calculate the likelihood.

P ( parameters | model ) «+ this represents our prior
knowledge of the model parameters.

P ( parameters | data, model ) + the posterior reflects our
combined knowledge based on the likelihood and the
priors.
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I Bayesian phylogenetic dating requires three model
components

* The substitution model + describes how sites evolve
over time.

* The clock model + describes how evolutionary rates vary
across the tree.

* The tree model « describes how trees grow over time.
Temporal evidence is included here.

' A
Substitution Clock Tree and tree
model model model
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I Bayesian phylogenetic dating

The data
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I Bayesian phylogenetic dating
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I Molecular clock models

The clock model « describes how evolutionary rates vary
across the tree.
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I The strict / constant molecular clock model

Assumptions:

* The substitution rate is
constant over time.

—
+ All lineages share the —
—L

same rate.

branch length = substitution rate
low I high
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I Relaxed clock models

Assumptions: —

* Lineage-specific rates are —
independent (i.e., I
uncorrelated). —

* The rate assigned to each —
branch is drawn
independently from the 4
underlying distribution.

branch length = substitution rate

low I high
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I Graphical models: strict clock model

a) Constant node

b) Stochastic node
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Hohna et al. ( )
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https://academic.oup.com/sysbio/article/63/5/753/2847897

I Graphical models: relaxed clock model

a) Constant node
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https://academic.oup.com/sysbio/article/63/5/753/2847897

I Many different clock models

« Strict clock
« Uncorrelated clock (= the favourite)

» Autocorrelated clock

Local clocks

* Mixture models

See Warnock & Wright ( ) for an overview.
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https://ecoevorxiv.org/4vazh/

I Many different clock models
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https://ecoevorxiv.org/4vazh/

Tree models and node dating



I The tree model

+ Describes the dynamics (speciation / transmission /
replication) of the tree generating process over time.

* Gives rise to the tree prior:
P (| )
* How likely is the phylogeny given the tree model?

 Calibration information is either combined with or
incorporated into the tree model.
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I If we have independent evidence of time, we can
calibrate the substitution rate
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What evidence are we really able to recover from the fossil
record?
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I Fossils provide minimum estimates of species
divergence time
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I Fossils provide minimum estimates of species

divergence time

‘ Molecular evolution:

genetic
divergence

‘ Morphological evolution:

apomorphy ‘

‘ Fossil preservation:

Time
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I Fossils provide minimum estimates of species

divergence time

‘ Molecular evolution:

divergence ‘

‘ Morphological evolution:

apomorphy ‘

‘ Fossil preservation:

earliest fossil
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I Fossils provide minimum estimates of species
divergence time

1. Fossil minimum
2. Acquisition of apomorphy
3. Most probable divergence time

Time
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I Node dating
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* We used a birth-death
model to describe the tree
generating process, given
we only observe extant
species.

* Then we separately apply a
calibration density to
constrain internal node
ages.

Spec;tion Oldes?fossil time”
time sampling time
Image adapted from Heath ( ) Systematic Biology
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https://academic.oup.com/sysbio/article/61/5/793/1735537

I The tree prior (for the non-fossil calibrated nodes)

speciation rate
Q

Pure birth process
i.e. no extinction

sampling probability

Birth-death sampling process

speciation rate i

Birth-death process
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I Complete versus reconstructed tree

The complete outcome of
the diversification and The reconstructed tree Model parameters
sampling processes

speciation (A\) = 0.1

speciation (\) = 0.1
extinction (p) = 0.05

speciation (A\) =0.1
extinction (p) = 0.05
extant sampling (p) = 0.6

L dk |
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I Take homes

Sequences do not directly contain information about time.
To date phylogenetic trees we need to separate rate and
time.

The molecular clock hypotheses allows us calibrate the
substitution rate and to date phylogenetic trees.

Bayesian inference is a flexible statistical framework that
allows us to integrate prior knowledge with models that
describe evolutionary processes.
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I Suggested reading

Understanding the tripartite approach to Bayesian divergence
time estimation — Warnock, Wright ( ) — the goal of
this review was to provide an accessible introduction to the
substitution, clock and tree models.
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https://ecoevorxiv.org/4vazh/

Exercise



