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Aims for RevBayes

Flexible model specification 
• Availability of (common) models 
• Extendability 

Easy to learn 
• Well structured model specification 
• Explicit models 
• Documentation, examples and 

tutorials

Computational efficiency 
• Fast likelihood calculators 
• Efficient (MCMC) algorithms
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RevBayes uses a graphical model framework

Graphical models provide tools for visually and computationally 
representing complex, parameter-rich probabilistic models. 
  
We can depict the conditional dependence structure of various 
parameters and other random variables.

Höhna et al. 2014. Sys Bio
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Graphical models provide tools for
visually & computationally representing
complex, parameter-rich probabilistic
models

We can depict the conditional
dependence structure of various
parameters and other random variables

Höhna, Heath, Boussau, Landis, Ronquist, Huelsenbeck. 2014.
Probabilistic Graphical Model Representation in Phylogenetics.
Systematic Biology. (doi: 10.1093/sysbio/syu039)
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Graphical models — types of variables (nodes)

a) fixed-value variables 

b) random variables that depend on other 
variables 

c) variables determined by a specific function 
applied to another variable (transformations) 

d) observed stochastic variables (data) 

e) replication over a set of variables

RevBayes Tutorial — Getting Started

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over
a set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Partially reproduced
from Fig. 1 in Höhna et al. (2014).]

Figure 2: Graphical model representation of a simple lognormal model. A total of N observations of variable x
are observed and occupy a clamped node. This parameter is log-normally distributed with parameters µ and ‡ (log
mean and standard deviation, respectively). The parameter µ is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and ‡. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyperprior on
M with constant nodes for the shape – and rate —. The stochastic variable ‡ is exponentially distributed with fixed
value for the rate ⁄.

Rev: The RevBayes Language

In RevBayes models and analyses are specified using an interpreted language called Rev. Rev bears simi-
larities to the compiled language in WinBUGS and the interpreted R language. Setting up and executing
a statistical analysis in RevBayes requires the user to specify all of the parameters of their model and the
type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the practi-
tioner to build complex, hierarchical models and to check the current states of variables while building the
model. This will be very useful in the beginning. Later on you, when you run very complex analyses, you
may want to write Rev-scripts.

Di�erently to R and BUGS, Rev is a strongly but implicitly typed language. It is implicitly typed, and thus
similar to Python, because you do not need to provide the type of a variable (which you need to in languages
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Specifying graphical models using the Rev 
syntax

RevBayes Tutorial — Getting Started

such as C++ and Java). We do implicit typing to help users who do not know about the actual types of
the variables. However, strongly typed means that every variable has a type and arguments of functions
need to match the required types. The strong type requirements ensures that you build meaningful model
graphs. For example, the variance parameter of a normal distribution needs to be a positive number, and
thus you can only use variables that are positive real numbers. RevBayes does automatic type conversion.

Specifying Models

Table 1: Rev assignment operators, clamp function, and plate/loop syntax.
Operator Variable

<- constant variable
~ stochastic variable
:= deterministic variable
node.clamp(data) clamped variable
= inference (i.e., non-model) variable
for(i in 1:N){...} plate

The variables/parameters of a statistical model are created using di�erent operators in Rev (Table 1). In
Figure 3, the Rev syntax for creating the model in Figure 2 is provided. Because Rev is an interpreted
language, it is important to consider the order in which you specify your variables (cf. BUGS where the
order is not important). Thus, typically the first variables that are instantiated are constant variables.
Constant variables require you to assign a fixed value using the <- operator. Stochastic variables are
initialized using the ~ operator followed by the constructor function for a distribution. In Rev, the naming
convention for distributions is dn*, where * is a wildcard representing the name of the distribution. Each
distribution function requires hyperparameters passed in as arguments. This is e�ectively linking nodes
using arrows in the graphical model. The following code snippet creates a stochastic variable called M
which is assigned a gamma-distributed hyperprior, with shape alpha and rate beta:

alpha <- 2.0

beta <- 4.0

M ~ dnGamma(alpha, beta)

The flexibility gained from the graphical model framework and the interpreted language allows you to easily
change a model by swapping components. For example, if you decide that a bimodal lognormal distribution
is a better representation of your uncertainty in M, then you can simply change the distribution associated
with M (after initializing the bimodal lognormal hyperparameters):

mean_1 <- 0.5

mean_2 <- 2.0

sd_1 <- 1.0

sd_2 <- 1.0

weight <- 0.5

M ~ dnBimodalLognormal(mean_1, mean_2, sd_1, sd_2, weight)
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# constant node
r <- 10

# stochastic node
l ⇠ dnExp(r)

# stochastic node (observed)
l.clamp(0.1)

# deterministic node
l := exp(r)

# stochastic nodes (iid)
for (i in 1:N) {

l[i] ⇠ dnExp(r)

}
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {
bl[I] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,
siteRates=rates_morpho, Q=Q_morpho,
type="Standard", coding="variable" )

phyMorpho.clamp( data )

# prior on the tree topology 
topology ~ dnUniformTopology(taxa) 

# prior on the branch lengths 
for (i in 1:num_branches) { 
   br_lens[i] ~ dnExponential(10) 
   moves.append( mvScale(br_lens[i]) ) 
} 

tree := treeAssembly(topology, br_lens) 

TL := sum(br_lens) 

# 4 state rate maxtrix (JC model) 
Q <- fnJC(4) 

# attach the model to your sequence data 
seq ~ dnPhyloCTMC(tree = tree, Q = Q, type = "DNA") 
seq.clamp(data) 
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Bayesian inference is like a cubist 
painting, the more you stare at it the 
more it begins to make sense. 
—Something Kat spotted in a 
textbook

The Weeping Woman by 
Picasso


