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Model selection vs. Model adequacy
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model is capturing
the evolutionary
dynamics that
generated the data

Gives the absolute
fit
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-
Model Adequacy

We know that none of our models are really true. Can we be sure
that the chosen model captures the salient features of the
evolutionary process and provides reliable inferences

Could the model and priors plausibly have given rise to the data

Allows us to ask whether any of our models are doing a good job
describing the evolutionary processes that produced our data
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Posterior Predictive Simulations

Ewmpirical Pata
taxal 010121
taxa2 121010
taxa3 001001
taxa4 110101

Hbéhna et al 2017
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Posterior Predictive Simulations

Ewmpirical Pata

taxal 010121 1)

taxa2 121010 B

taxa3 001001 Standard

taxa4 110101 MCMC
inference while
sampling from
the posterior
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Posterior Predictive Simulations

Ewpirical Data

Simvulated Pata 1
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inference while sampled in 1) Simolated Data n

sampling from generate new taxal 110121

the posterior data sets taxa2 111010
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taxa4 120101
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Posterior Predictive Simulations

Ewpirical Data

Simvulated Pata 1
taxal 100121
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taxal 110121

taxal 010121 1 2) taxa2 121020 taxa2 111010
taxa2 121010 S—. F— taxa3 010111 taxa3 011101
taxa3 001001  gtandard Usina the faxa4 100101 faxa4 120101
faad TTOTOT momc 1 L infogma’rion

inference while sampled in 1) Simulated Data n

sampling from generate new taxal 110121

the posterior data sets taxa2 111010

taxad2 011101
taxa4 120101

Carry out the same inference
as in step 1) using the new 3
simulated data sets
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Posterior PredrC

Ewpirical Data
taxal 010121
taxa2 121010
taxa3 001001
taxa4 110101
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Simulated Pata 1
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Test Statistics

How can we compare trees and morphological
matrices?

Need to get test statistics that compare the difference

More work has been done for molecular data — easier to
compare

To compare simulations to empirical data we use effect sizes.
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Test Statistics

Tree Length
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Nuwmber of standard deviation simulated

RF is from empirical RF

Test Statistics
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Test Statistics "
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More test statistics

Tree length

Robinson Foulds
Consistency Index
Retention Index
Hamming distances
Multiple distance metrics
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Exercise 3

Check if either of the two models you chose for
exercise 1 fit your data using a model adequacy
approach
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