Geometric morphometrics Introduction

Manuel F. G. Weinkauf

Univerzita Karlova, Prague, Czech Republic

26-27 August 2022

Who am I and why do I teach this?

Section 1

Who am I and why do I teach this?

My way in life

2003–2010	DiplGeol.: Freie Universität Berlin, Germany
2011–2015	Dr. rer. nat.: Eberhard–Karls Universität Tübingen, Germany
2015	Postdoctoral researcher: Universität Bremen, Germany
2015–2019	Research Associate: Université de Genève, Switzerland
since 2020	Academic Researcher: Univerzita Karlova, Czech Republic

frontiers in ECOLOGY AND EVOLUTION

ORIGINAL RESEARCH ARTICLE

Disruptive selection and bet-hedging in planktonic Foraminifera: shell morphology as predictor of extinctions

Manuel F. G. Weinkauf^{1,2}*, Tobias Moller¹, Mirjam C. Koch¹ and Michal Kučera²

¹ Micropalaeontology, Department of Geosciences, Eberhard-Karls University, Tübingen, Germany
² Center for Marine Environmental Sciences, Micropalaeontology-Palaeoceanography, University Bremen, Bremen, Germany

Paleobiology, 43(2), 2017, pp. 304-320 DOI: 10.1017/pab.2016.44

Grasping the shape of belemnoid arm hooks-a quantitative approach

René Hoffmann, Manuel F. G. Weinkauf, and Dirk Fuchs

Is there more than one species in the genus Spirula (Cephalopoda: Decabrachia): evidence for an Atlantic–Pacific divide

René Hoffmann¹, Manuel F. G. Weinkauf^{2,3}, Dirk Fuchs⁴ and Alexander Lukeneder⁵

Pagasinet of Earth Science, Institute of Codings, Marridge, and Codingsin, Book Sciencial Radium, Universitations v. 15th, 1809; Books, George, "Group of Schwesting, Researching Special Science, and Codings of Science, 1. pp. 2113-21391

PHYLOGENETIC PATHWAY OF THE IMONITE GENUS *AEGOCRIOCERAS* DNSHIP TO *JUDDICERAS* SPP. AND SPP.

AUF¹ , RENÉ HOFFMANN² and

arlova, Albertov 2038/6, 128 43 Praha, Czech Republic; weinkaum@natur.cuni.cz Mineralow and Goodysics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.

Section 2

A brief history and applicability of morphometrics

A brief history and applicability of morphometrics

Early shape studies

Earliest stages

Size and shape for information transfer

 In art from the Middle Ages, size and shape was used to symbolize importance and rank

Maksymiszyn (2013) Medieval Art (https://michalsgraphicblog.blogspot.com)

Early shape studies

Earliest stages

Size and shape for information transfer

- In art from the Middle Ages, size and shape was used to symbolize importance and rank
- In the Renaissance, a more scientific approach was adopted that tried to understand proportions in organisms

da Vinci (c.1490) Le proporzioni del corpo umano secondo Vitruvio

LEarly shape studies

Earliest stages

Size and shape for information transfer

- In art from the Middle Ages, size and shape was used to symbolize importance and rank
- In the Renaissance, a more scientific approach was adopted that tried to understand proportions in organisms
- This culminated in early experiments with deformation grids by Albrecht Dürer

Dürer (1528) Vier Bücher von menschlicher Proportion

Deformationists vs. statisticians

Deformation: The school of D'Arcy Wentworth Thompson

- Biological shape can be constructed by the deformation of corresponding or topologically homologous points
- Complex morphological transformations are result of simple geometric deformations ⇒ evolutionary approach

Sternoptvx

Thompson (1917) On Growth and Form (Cambridge University Press: Cambridge)

Deformationists vs. statisticians

Description: The statistician's school

- Quantification of biological shape provides information about mean values and variation in populations and taxa
- Morphological data can be interpreted as statistical summaries of form similarity and difference ⇒ descriptive approach

Sir Francis Galton

Karl Pearson

Sir Ronald A. Fisher *1890. †1962

Calyampudi R. Rao *1920

Coining the term 'Morphometrics'

 'Morphometrics' was first used by Robert E. Blackith in 1957 during his work on polymorphism in locusts

Coining the term 'Morphometrics'

- 'Morphometrics' was first used by Robert E. Blackith in 1957 during his work on polymorphism in locusts
- The term was widely established in 1971 by the book 'Multivariate Morphometrics' by R. E. Blackith and R. A. Reyment

Coining the term 'Morphometrics'

- 'Morphometrics' was first used by Robert E. Blackith in 1957 during his work on polymorphism in locusts
- The term was widely established in 1971 by the book 'Multivariate Morphometrics' by R. E. Blackith and R. A. Reyment
- Since the late 80s/early 90s, the field of morphometrics is rapidly expanding and advancing

What is morphometrics good for?

- Offer an objective and quantitative (reproducible) assessment of morphology of populations and species to
 - Objectively distinguish taxa and ecophenotypes (systematics and ecology)

What is morphometrics good for?

- Offer an objective and quantitative (reproducible) assessment of morphology of populations and species to
 - Objectively distinguish taxa and ecophenotypes (systematics and ecology)
 - Evaluate the impact of the environment on morphological developments during growth (evo-devo)

What is morphometrics good for?

- Offer an objective and quantitative (reproducible) assessment of morphology of populations and species to
 - Objectively distinguish taxa and ecophenotypes (systematics and ecology)
 - Evaluate the impact of the environment on morphological developments during growth (evo-devo)
 - 3 Reconstruct morphological changes during phylogeny (evolution)

The systematics of morphometrics

Traditional morphometrics

A brief history and applicability of morphometrics

└Systematics of morphometrics

Traditional morphometrics

A set of individual, linear measurements

A brief history and applicability of morphometrics

└Systematics of morphometrics

Traditional morphometrics

A set of individual, linear measurements

Skull length = $34 \, \text{cm}$

Traditional morphometrics

A set of individual, linear measurements

Skull length = 34 cm Jaw length = 26 cm

Traditional morphometrics

A set of individual, linear measurements

Skull length = 34 cm Jaw length = 26 cm Skull height = 19 cm Nose height = 12 cm Eye height = 12 cm

Traditional morphometrics

A set of individual, linear measurements

Skull length = 34 cm Jaw length = 26 cm Skull height = 19 cm Nose height = 12 cm Eye height = 12 cm

We end up with a set of univariate morphological measurements

Traditional morphometrics

Pros and cons

Pros

- Easy to measure
 - Just a linear length
- Easy to store
 - Simple tabular data
- Easy to understand
 - Intuitive quantity with direct meaning

Traditional morphometrics

Pros and cons

Pros

- Easy to measure
 - Just a linear length
- Easy to store
 - Simple tabular data
- Easy to understand
 - Intuitive quantity with direct meaning

Cons

- Measures only sizes
 - Just a linear length
- Derived shape parameters
 - Shape from e.g. ratios
- Shape and size intermingled
 - How to separate size from shape?

Traditional morphometrics

Multivariate solutions

 Multivariate analyses are often employed to separate size and shape information

Dardón et al. (2020) Int. J. Sci. Res. Biol. Sci. 7 (2): Article 114

Traditional morphometrics

Multivariate solutions

- Multivariate analyses are often employed to separate size and shape information
- Caution: This is only true under very specific circumstances
- Adaptations of principal component analysis where devised to deal with this problem, e.g. Somers (1986) Syst. Zool. 35 (3): 359–368

Dardón et al. (2020) Int. J. Sci. Res. Biol. Sci. 7 (2): Article 114

A brief history and applicability of morphometrics

└Systematics of morphometrics

Outline analyses

A mathematical description of the structure's perimeter

 Ideal for structures with little internal characteristics

Carcharadontosaurus saharicus

http://www.fossilmall.com

Systematics of morphometrics

Outline analyses

A mathematical description of the structure's perimeter

Carcharadontosaurus saharicus

- Ideal for structures with little internal characteristics
- Identify the object of interest in the image

└Systematics of morphometrics

Outline analyses

A mathematical description of the structure's perimeter

- Ideal for structures with little internal characteristics
- Identify the object of interest in the image
- Extraxt x- and y coordinates along outline
- The first outline point is mostly a well defined homologue structure

Carcharadontosaurus saharicus

└Systematics of morphometrics

Outline analyses

Pros and cons

Pros

- Automated extraction
 - Outline is well defined and computer-findable
- Pure shape data
 - Size is eliminated by mathematical transformation
- Easy to analyse
 - Standard statistics work without modification

└Systematics of morphometrics

Outline analyses

Pros and cons

Pros

- Automated extraction
 - Outline is well defined and computer-findable
- Pure shape data
 - Size is eliminated by mathematical transformation
- Easy to analyse
 - Standard statistics work without modification

Cons

- Difficult to analyse
 - Only starting point is comparable
- Derived shape parameters
 - Complex mathematical re-description of shape information
- Limited information
 - No structure-internal information

└─Systematics of morphometrics

The systematics of morphometrics

└Systematics of morphometrics

Landmark analyses

└Systematics of morphometrics

Landmark analyses

└Systematics of morphometrics

Landmark analyses

└Systematics of morphometrics

Landmark analyses

└─Systematics of morphometrics

Landmark analyses

Pros and cons

Pros

- Pure shape data
 - Size is eliminated by superimposition
- Easy to understand
 - Landmark coordinates have direct meaning
- Detailed information
 - Structure-internal information provided

└Systematics of morphometrics

Landmark analyses

Pros and cons

Pros

- Pure shape data
 - Size is eliminated by superimposition
- Easy to understand
 - Landmark coordinates have direct meaning
- Detailed information
 - Structure-internal information provided

Cons

- Difficult to extract
 - Manual or using machine learning
- Difficult to analyse
 - Standard statistics must be modified
- Limited applicability
 - Requires homologous morpho-structures

Section 3

Literature and tools

Light introductory literature

Practical hands-on guides

In-depth methodological books

In-depth methodological books

In-depth methodological books

Literature and tools

└ Tools

Hardware

Camera

∟_{Tools}

Hardware

Microscope

Hardware

Camera

Surface laser scanner

CT scanner

Microscope

Software

Data extraction

FIJI

Scientific image analysis program

https://imagej.net/software/fiji/

tpsDig 2

Geometric morphometrics program

http://sbmorphometrics.org/soft-dataacq.html

Software

Data extraction

FIJ

Scientific image analysis program

 $\verb|https://imagej.net/software/fiji/|$

tpsDig 2

Geometric morphometrics program

http://sbmorphometrics.org/soft-dataacq.html

Data analysis

PAST

General statistics program

https://tinyurl.com/52ema3f4

MorphoJ

Landmark analysis program

 $\verb|https://morphometrics.uk/MorphoJ_page.html|$

Software

- Integrated work environment in R
- Allows data extraction and advanced data analysis in a unified framework
- Several available packages:
 - geomorph: 2 D/3 D landmark extraction, manipulation, and analysis
 - shapes: Landmark analysis
 - Momocs: 2 D morphometrics (traditional, outlines, landmarks)
 - Morpho: Morphometric deformation analyses
 - hangler: Fast Fourier Transform for outline analyses

