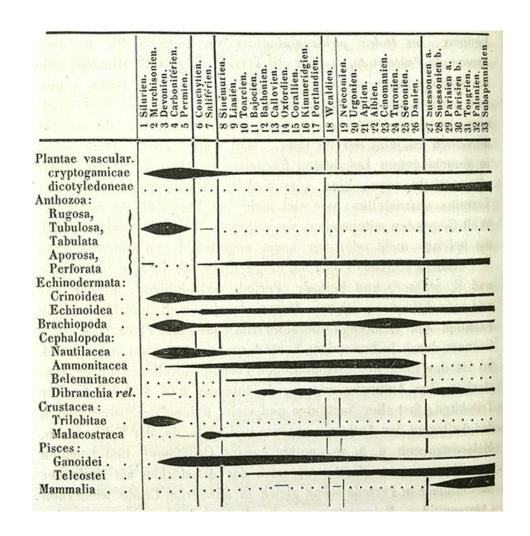
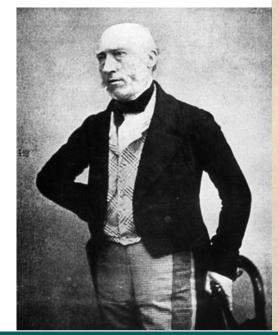
1. Paleodiversity: Past, Present & Future

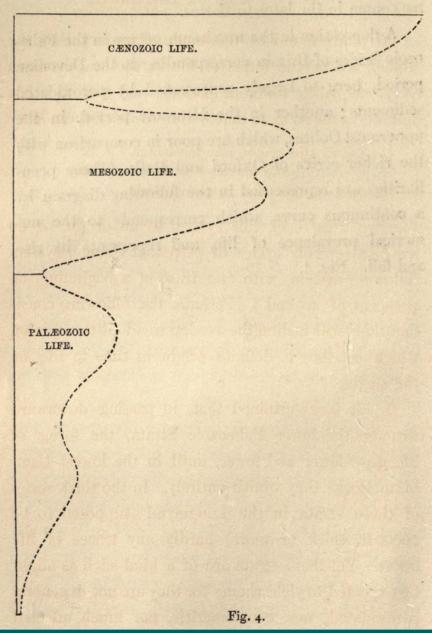
Emma Dunne

FAU Erlangen-Nürnberg

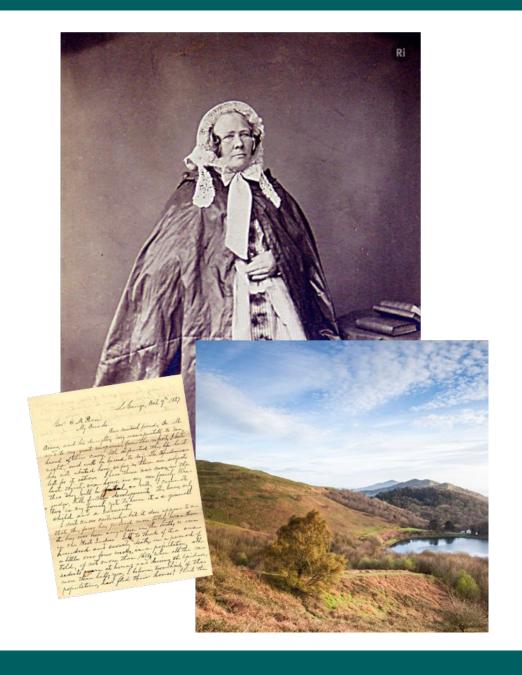
Thursday 25/08/2022

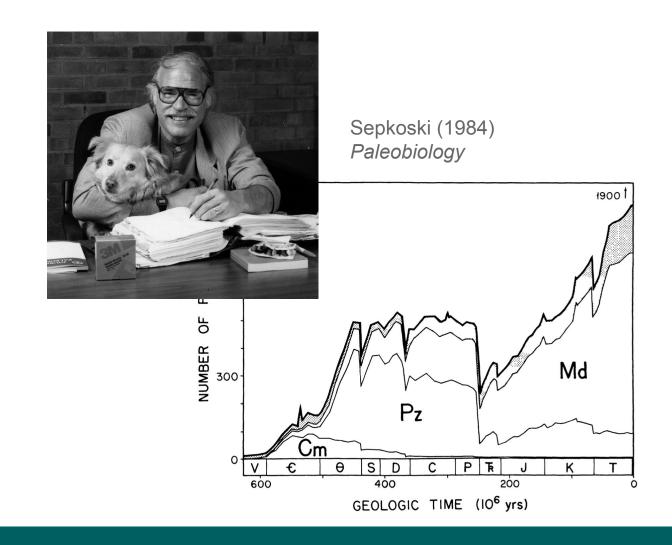



Early paleodiversity studies

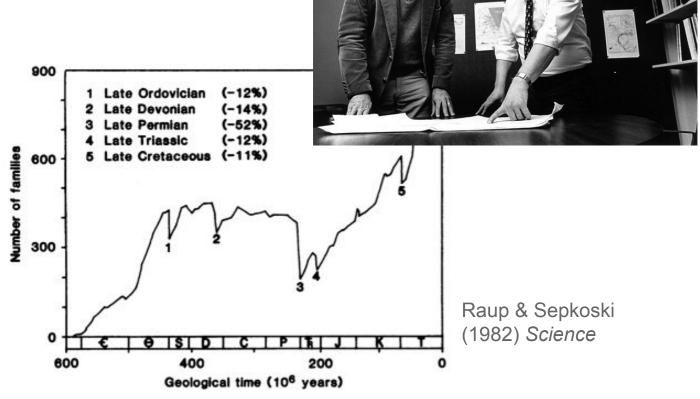

- Heinrich Georg Bronn (1849)
- German geologist and paleontologist
- First to translate Charles Darwin's On the Origin of Species into German in 1860
- Spindle diagrams

Early paleodiversity studies


- John Phillips (1860)
- British geologist (coined the term 'Mesozoic')
- The first 'diversity curve' based on what was known of the British fossil record at the time


Anne Phillips

- John's sister, arguably a more accomplished geologist
- Employed as John's housekeeper, and later field assistant
- Resolved the origins of the Malvern Hills (discovery of "Ms Phillips' Conglomerate")
- Her contributions are noted by her brother and uncle in their published works and letters


Paleodiversity in the 1970s-80s

- Jack Sepkoski (and Ronnie)
- The Sepkoski Compendium (now part of the Paleobiology Database)
- "The most famous wiggly line in palaeontology" Dr Alex Dunhill

Paleodiversity in the 1970s-80s

- Jack Sepkoski & David Raup (University of Chicago)
- Identified the "Big Five"
 mass extinctions in the
 marine invertebrate fossil
 record

Paleodiversity in the 1970s-80s

- First issue of *Paleobiology* (March 1975)
- Compare to other paleontological journals publishing at the same time:
 - Less taxonomic descriptions
 - Focus on compilations of data
 - (Macro)evolutionary hypotheses

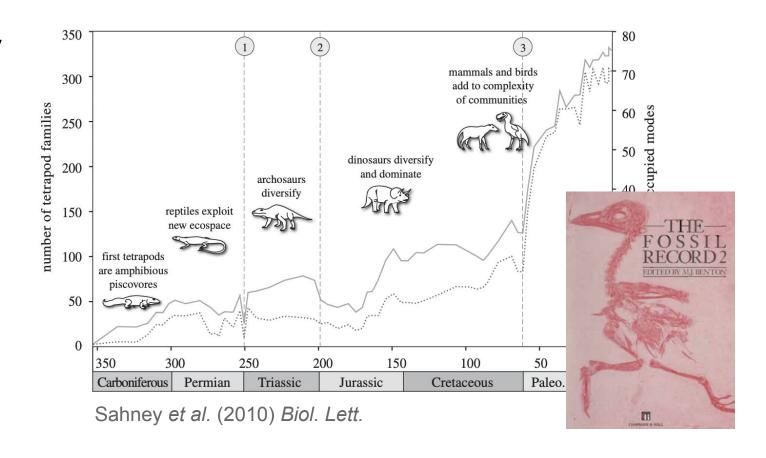
Paleobiology

Volume 1

Number 1

Winter, 1975

CONTENTS	
Disruption of ideal geometry in the growth of receptaculitids: a natural experiment in theoretical morphology Stephen Jay Gould and Michael H	Katz
The evolution of cranial display structures in hadrosaurian dinosaurs James A. Hop	oson 2
Diductor muscles of brachiopods: active or passive? Charles W. The	ayer 4
Why clams have the shape they have: an experimental analysis of burrowing Steven M. State	nley 4
New evidence for muscular articulations in Paleozoic crinoids $N.\ Gary\ Lane\ and\ Donald\ B.\ Macurda$, Jr. 5
Genomic versus morphologic rates of evolution: influence of morphologic complexity Thomas J. M. Sch David M. Raup, Stephen Jay Gould, and Daniel S. Simber	
Specialization and evolutionary longevity in the Arthropoda Karl W. Flessa, Kenneth V. Powers and John L. C	isne 7
Taxonomic survivorship curves and Van Valen's Law David M. R	Raup 8
A comparative study of Silurian and Recent deposit-feeding bivalve communities	bach 9
Reviews	
Evolution of the Brain and Intelligence, by Harry J. Jerison Stephen Jay Gould	1:
Models in Ecology, by J. Maynard Smith Thomas J. M. Schopf	1
The Genetic Basis of Evolutionary Change, by Richard C. Lewontin Eliot B. Sniess	13

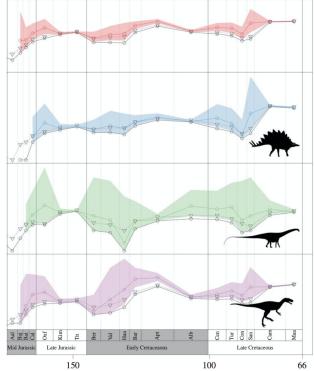

A quarterly journal of the Paleontological Society © 1975 The Paleontological Society. All rights reserved. Mailing Date: March 6, 1975

ISSN 0094-8373—CODEN PALBBM 1(1) 1-135 (1975)

wnloaded from https://www.cambridge.org/core. Lund University Libraries, on 18 Jan 2020 at 11:52:32, subject to the Cambridge Core terms of use, available at

Paleodiversity in the 1990s-2000s

- Mike Benton (University of Bristol) and colleagues
- The Fossil Record Database - included terrestrial vertebrates (tetrapods)



Paleodiversity in the 2010-20s

- The Paleobiology Database and others grew in popularity
- Fossil record biases were acknowledged increasingly often
- Analytical methods were developed and are continuously being refined (e.g. sampling standardisation)

Paleodiversity in the future?

What are your thoughts?

Where is analytical paleobiology heading towards?

What challenges do we need to overcome?

What excites you about the future of analytical paleobiology?

Paleodiversity in the future?

Challenges for our field - according to the Class of 2019:

- Interpreting geohistorical data across temporal, spatial, and taxonomic scales
- Integrating paleobiological, paleoenvironmental, and ecological data
- 3. Building data science skills and developing statistical approaches to analyse geohistorical data
- 4. Increasing data accessibility and equity

