Time series analyses In
Paleobiology



What are timeseries (TS) data

What are time series analyses?



Timeseries (TS)

« set of values in sequence * From a statistical perspective,
representing a variable value at the impact of time resulting
different points in time from repeated

. measures collected at regular time ~ Measurements over time on a
intervals** .... ... resulting in a set single subject or unit, introduce

of ordered values a dependency among data
points which prevents the use of
some of the most common
Statistical techniques

« sampling adjacent points in time
introduces a correlation in the
data

https://nicolarighetti.github.io/Time-Series-Analysis-With-R/basic-concepts.html#time-series



Objectives of time series analyses

‘DESCRIPTION
Temporal trend?
*Peak at some point?
‘Repeated patterns?

‘EVALUATION & EXPLANATION
« Impact of a certain event (Before and After)
» “Drivers” of processes.

‘FORECASTING
*Prediction of the future values of a process
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Trends:
long-term increase or decrease in
the data

Seasonal:

affected by seasonal factors e.g.
time of the year or the day of the
week:

always of a fixed and known
frequency

Cyclic:

exhibit rises and falls that are not
of a fixed frequency

https://otexts.com/fpp2/tspatterns.html
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Some paleontologlcal time series

— Speciation rate. Jomm Nt chversication rate

Condamine et al. Dinosaur biodiversity declined well before the
asteroid impact, influenced by ecological and environmental
pressures. Nat Commun 12, 3833 (2021).
https://doi.org/10.1038/s41467-021-23754-0




Some paleontological time series
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Time series concepts

* Time series data are temporally * Whatis WN? (a TS whose

autocorrelated statistical properties like mean,
* We can study TS in their time or variance and autocorrelation
frequency domains (spectral remain constant over time,

staionary, looks the same
S . folk thei anywhere you look)
* Sometimes folks massage their . ,
data so it resembles white noise V\I/Dhatt'fh@ RW (yf’“ (t))ftein h?ﬁ;‘ﬁ
(WN) so it is easier to analyse (it's G001 O3 1N PAICODIOIOEY) 1S
a bit like transforming your data R .
so it “behaves well” for standard ¢ RW s X(at time t)= X (at time t-1)
statistical models that assume + white noise (at t)
that the data are normally
distrbuted.

analyses
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One major example

* Important historically in
paleontology

* Important in time series tool
developmentin both
evolutionary biology
(comparative phylogenetics)
and paleontology



Eldredge and Gould 1972 Punctuated equilibria: an alternative to phyletic
gradualism in Models in Paleobiology.

%,
%
-

MORPHCLOGY

Figure 5-9: The “Tree of Life” viewed from the perspective of phyletic
gradualism. Branches diverge gradually one from the other. A slow and
1969; figure 637.

relatively equal rate of evolution pervades the system. From Weller,



Punc equilibrium :

canonical phenotypic models

Stasis
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Hunt 2010. Evolution in fossil lineages: paleontology and the origin of species. The American Naturalist 176:S61-S76.
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Hunt 2008 Gradual or pulsed evolution: when should punctuational
explanations be preferred? Paleobiology 34:60-377

GRADUAL VS. PUNCTUATED EVOLUTION 365

A Unsampled punctuation B Sampled punctuation
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FIGURE 1. Illustrations of two kinds of punctuated change: unsampled punctuations (A), in which few or no in-
termediate populations are captured; and sampled punctuations (B), in which multiple populations from the tran-
sition interval are observed. Unsampled punctuations can be modeled effectively as two intervals of stasis with
different optima (0, and 8,); the magnitude of punctuated change is determined by the difference in the two optimal
values. For sampled punctuations, the interval of directional change is modeled explicitly as a general random walk
inserted between two periods of stasis.



More models (evolS) . =
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Objectives of time series analyses

‘DESCRIPTION
Temporal trend?
*Peak at some point?
‘Repeated patterns?
*Tipping points, break points

‘EVALUATION & EXPLANATION
« Impact of a certain event (Before and After)
* “Drivers” of processes.

‘FORECASTING
*Prediction of the future values of a process



* Study one time series by itself
 Patterns
e Structure
e Parameters

spring summer fall winter spring summer fall winter

https://training.weather.gov/pds/climate/pcu2/statistics/Stats/part1/CTS_PFtmin.png

* Relationship(s) between 2 or more time series
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US spending on science, space, and technology

correlates with
Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)
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_Landscape dynamics and the Phanerozoic diversification of the biosphere Nature
624:115-121

“The reconstructed net sediment flux to the ocean and the total number of marine families are
strongly correlated (Pearson coefficient 0.88) and sediment flux variation markedly matches the
three main phases that span the Phanerozoic eon (Fig. 3 and Extended Data Fig. 10a). This suggests
that nutrient availability is a prime control on marine diversity.”


https://www.nature.com/articles/s41586-023-06777-z
https://www.nature.com/articles/s41586-023-06777-z

Gould & Calloway 1980 Clams and Brachiopods-Ships That Pass in the Night. Paleobiology

“The supposed replacement of brachiopods by clams is not gradual and sequential. It is a product of one event:
the Permian extinction (which affected brachiopods profoundly and clams relatively little).”

500 — . -
. - o
1*Brachiopods 2 ©
400 — O = o
* Clams £ 2
| & i,
300 — 'j’ -
*
i w0
| #ed
200 0 ..f. . o*® b
7 o O g L/ g .~ w
100 — . o *’..
] P T PV i’ o -
o ® Yo Q‘
0 _—.T_._T T I T | T I T T ]
600 500 400 300 200 100 0
Age (Ma) after Gould & Calloway (1980)

https://www.geo.arizona.edu/Antevs/ecol438/clambrac.html




BIVALVES RATES BRACHIOPOD RATES
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Liow, Reitan & Harnik 2015 Ecological interactions on macroevolutionary time scales:
clams and brachiopods are more than ships that pass in the night. Ecology Letters

“Carcful—it might be a trap!”



Hypotheses

Sea level (scaled)
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Data from Hannisdal and Peters Science 201 1500 Age (Ma)
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Granger causality via linear Stochastic Differential Equations
(SDEs)

Deterministic part Stochastic
part

dXi(t)=-ou(X1(t)-u1)dt+o1dB1(t)

Trond Reitan Tore Schweder
University of Oslo, Norway University of Oslo, Norway



Deterministic part Stochastic
part

dXi(t)=-ou(X1(t)-u1)dt+o1dB1(t)

X, is correlated with X,

dX2(t)=- 0 (X2(t)-Liz) dt+G2(1-p2)05dBa(t) + PG 2dB1 (t)



Deterministic part Stochastic
part

dXi(t)=-ou(X1(t)-u1)dt+o1dB1(t)

X, is correlated with X,

dX2(t)=- 0 (X2(t)-Liz) dt+G2(1-p2)05dBa(t) + PG 2dB1 (t)

X, is driven by X;

dXz(t) =Coe(X2(t)-uz-BX1(t) -ui])dt)




Link models that can be built using linear SDEs
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Hidden layers — not black magic

The hidden (bottom) layer can be found by its imprint on the observed (top)
layer.

0.6 0.8 1.0

0.4

Autocorrelation

5 Red=autocorr. of only bottom layer
Black=autocorrelation of 2-layered system
Blue=autocorrelation of only top layer




Clams and brachiopods are more than ships
that pass in the night

=3 Causal

————— Correlative

Bivalve \ 14,,=0.13
origination/ $=0.42

Bivalve

extinction Uncertain connection type

— JNcertain origin

Hidden
process 1

Liow, Reitan & Harnik 2015 Ecology Letters

Reitan & Liow 2017 Paleobiology

Brachiopod
extinction

Climate and sea-level changes have no measurable effects
t,,=37 on diversification dynamics of bivalves or brachiopods on
s=0.52 Phanerozoic time scales

Hidden
process 2

* Bivalves have been “suppressing” brachiopod diversification
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Reitan, T. and Liow, L.H. (2017) An unknown Phanerozoic driver of brachiopod extinction rates
unveiled by multivariate linear stochastic differential equations. Paleobiology DOI:
10.1017/pab.2017.11
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Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil orig 1. cheil ext 1. cheil orig 1. cheil ext
2. cyd orig 2. cyd ext 2. cyd ext 2. cyd orig
A. no relationship between time series 41.8 11.4 49.2 24.1
B. 1st time-series drives 2nd 10.5 22.9 1.4 9.8
C. 2nd time-series drives 1st 20.4 134 14.5 244
D. temporal feedback between time series 17.9 440 14.6 31.2
E. correlation between time series 9.4 8.3 10.2 10.5
1. cheil orig 1. cheil ext 1. cydl orig 1. cydl ext
2. proportion 2. proportion 2. proportion 2. proportion
A. no relationship between time series 349 73 444 38.2
B. 1st time-series drives 2nd 18.5 11.8 14.4 12.1
C. 2nd time-series drives st 14.7 10.6 15 16.9
D. temporal feedback between time series 25.2 0 18.4 249



Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil ext 1. cheil ext

1. cheil orig

1. cheil orig

2. cyd orig 2. cyd ext 2. cyd ext 2. cyd orig
A. no relationship between time series 418 11.4 49.2 24.1
B. 1st time-series drives 2nd 10.5 22.9 114 9.8
C. 2nd time-series drives 1st 20.4 134 14.5 244
D. temporal feedback between time series 17.9 440 14.6 31.2
E. correlation between time series 9.4 8.3 10.2 10.5
Model D Mean | Median | Lower 5% | Upper 95%
u.cheilostome.extinction -2.126 | -2.088 -3.641 -0.605
t;/ocheilostome.extinction 30.3445 | 14.1167 0.719 136.945
o .cheilostome.extinction 0.288 0.294 0.002 0.623
u.cyclostome.extinction -2.459 | -2.527 -3.728 -0.939
t1/2-cyclostome.extinction 13.710 3.474 0.460 77.983
g.cyclostome.extinction 0.195 0152 0.002 0.6467
B.cheilostome.extinction.to.cyclostome.extinction 0522 0:572 -0.345 1.212
B.cyclostome.extinction.to.cheilostome.extinction 0.326 0.442 -1.017 1.315
Model b




Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil orig 1. cheil ext 1. cheil orig 1. cheil ext
2. cyd orig 2. cyd ext 2. cyd ext 2. cyd orig

A. no relationship between time series 418 11.4 49.2 24.1
B. 1st time-series drives 2nd 10.5 22.9 114 9.8
C. 2nd time-series drives 1st 20.4 134 14.5 244
D. temporal feedback between time series 17.9 440 14.6 31.2
E. correlation between time series 9.4 8.3 10.2 10.5

Model D Lower Upper

Mean | Median | 95% 95%
w.cheilostome.extinction 2.482 | -2.493 -3.795 -1.070
14.67

t1/2-cheilostome.extinction 4 6.600 0.641 80.398

o .cheilostome.extinction 0.197 | 0.168 0.002 0.577

u.cyclostome. origination 2.026 | -2.036 -3.268 -0.472

29.31

ty/2-cyclostome. origination 9| 18.183 0.709 121.259

o.cyclostome.origination 0.275 0.252 0.009 0.658

B.cheilostome.extinction.to.cyclostome.origina

tion 0.275 0.303 -0.915 1.185

B.cyclostome.origination.to.cheilostome.extine

tion 0563 0 637 -0 773 1314




Do tectonics regulate marine diversity at Phanerozoic time scales?

Connor Wilson
(Post bac Fulbright in Oslo, now U of Arizona
grad student)

Zaffos et al. 2017. Plate tectonic regulation of global marine animal
diversity. PNAS
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Other causal, and “causal” inference
approaches

* First differencing

* Break point analyses, spectral analyses

e Structural equation modelling and path analyses
* Information Transfer

* Convergent cross mapping (CCM)

* Etc. see e.g. Runge, J., Gerhardus, A., Varando, G. et al. Causal
inference for time series. Nat Rev Earth Environ 4, 487-505 (2023).
https://doi-org.ezproxy.uio.no/10.1038/s43017-023-00431-y



Do tectonics regulate marine diversity at Phanerozoic time scales? - Nope

Wilson et al. 2024 unveiling the underlying drivers of Phanerozoic marine diversification (Proc B Roy Soc)
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layeranalyzer: Inferring correlative and causal connections
from time series data inr

Trond Reitan'? | Lee Hsiang Liow?

1Department of Biosciences, Centre
for Ecological and Evolutionary Abstract

Synthesis, University of Oslo, Oslo, Norway 1. Distinguishing correlative and causal connections among time series is an impor-

?Natural History Museum, University of

tant challenge in evolutionary biology, ecology, macroevolution and palaeobiology.
Oslo, Oslo, Norway

2. Here, we present layeranalyzer, an r package that uses linear stochastic differ-

$°":s;c','t‘de"°e ential equations as a tool for parametrically describing evolutionary and ecological
ron eltan
Email: trond.reitan@ibv.uio.no processes and for modelling temporal correlation and Granger causality between

- ; two or more time series.
Funding information

H2020 European Research Council, 3. We describe the basic functions in 1ayeranalyzer and briefly discuss modelling
Grant/Award Number: 724324; Norges
Forskningsrad, Grant/Award Number:

235073/F20 model a single time series of phenotypic evolution in a bird species; second, we

strategies by demonstrating our tool with three disparate case studies. First, we

extract cyclical connections in the well-known hare-lynx dataset; third, we infer

Uandlina Editar: Camantha Drica



Take home:
Remember: Software are “blind”!!!

And numbers with no units attached
cannot usually be interpreted!



