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What are timeseries (TS) data

What are time series analyses?



Timeseries (TS)

» set of values in sequence * From a statistical perspective,
representing a variable value at the impact of time resulting
different points in time from repeated

« measures collected at regular time measurements over time on a

single subject or unit, introduce

a dependency among data
points which prevents the use of
some of the most common
Statistical techniques

intervals™* .... ... resulting in a set
of ordered values

« sampling adjacent points in time
introduces a correlation in the
data

https://nicolarighetti.github.io/Time-Series-Analysis-With-R/basic-concepts.html#time-series



Objectives of time series analyses

‘DESCRIPTION
Temporal trend?
Peak at some point?
‘Repeated patterns?

‘EVALUATION & EXPLANATION
« Impact of a certain event (Before and After)
* “Drivers” of processes.

‘FORECASTING
*Prediction of the future values of a process
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Trends:
long-term increase or decrease in
the data

Seasonal:

affected by seasonal factors e.g.
time of the year or the day of the
week:

always of a fixed and known
frequency

Cyclic:

exhibit rises and falls that are not
of a fixed frequency

https://otexts.com/fpp2/tspatterns.html
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Some paleontologlcal time series
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Condamine et al. Dinosaur biodiversity declined well before the
asteroid impact, influenced by ecological and environmental
pressures. Nat Commun 12, 3833 (2021).
https://doi.org/10.1038/s41467-021-23754-0



Some paleontological time series
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Hunt G.2010 Evolution in fossil lineages: paleontology and The
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Time series concepts

* Time series data are temporally * Whatis WN? (a TS whose
autocorrelated statistical properties like mean,
« We can study TS in their time or variance and autocorrelation
- remain constant over time,
gﬁg@gggf’ domains (spectral staionary, looks the same

anywhere you look)

* Sometimes folks massage their .
. - : * Whatis a RW (you often hear
data so it resembles white noise about this in paleobiology)? Is

(WN) so it is easier to analyse (it’s

a bit like transforming your data that WN?

so it “behaves well” for standard * RWis X(at time t)= X (at time t-1)
statistical models that assume + white noise (at t)

that the data are normally

distrbuted.



One major example

* Important historically in
paleontology

* Important in time series tool
development in both
evolutionary biology
(comparative phylogenetics)
and paleontology



Eldredge and Gould 1972 Punctuated equilibria: an alternative to phyletic
gradualism in Models in Paleobiology.
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Fignre 5-9; The “Tree of Life” viewed from the perspective of phyletic
gradualism. Branches diverge gradually one from the other, A slow and
rclatively equal rate of evolution pervades the system. From Wecller,
1969; figure 637.



Test Conicity

Punc eq : canonical phenotypic models
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Hunt 2010. Evolution in fossil lineages: paleontology and the origin of species. The American Naturalist 176:5S61-S76. R p ac ka ge Pa I_e OTS



Hunt 2008 Gradual or pulsed evolution: when should punctuational
explanations be preferred? Paleobiology 34:60-377

GRADUAL VS. PUNCTUATED EVOLUTION 365

A Unsampled punctuation B Sampled punctuation
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FIGURE 1. Illustrations of two kinds of punctuated change: unsampled punctuations (A), in which few or no in-
termediate populations are captured; and sampled punctuations (B), in which multiple populations from the tran-
sition interval are observed. Unsampled punctuations can be modeled effectively as two intervals of stasis with
different optima (6, and 8,); the magnitude of punctuated change is determined by the difference in the two optimal
values. For sampled punctuations, the interval of directional change is modeled explicitly as a general random walk
inserted between two periods of stasis.
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Objectives of time series analyses

‘DESCRIPTION
Temporal trend?
Peak at some point?
*Repeated patterns~

‘EVALUATION & EXPLANATION
« Impact of a certain event (Before and After)
* “Drivers” of processes.

‘FORECASTING
*Prediction of the future values of a process



Relationship(s) between 2 or more time series
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US spending on science, space, and technology

correlates with
Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)
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Cambrian Pearson correlation 0.88
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_Landscape dynamics and the Phanerozoic diversification of the biosphere Nature
624:115-121

“The reconstructed net sediment flux to the ocean and the total number of marine families are
strongly correlated (Pearson coefficient 0.88) and sediment flux variation markedly matches the
three main phases that span the Phanerozoic eon (Fig. 3 and Extended Data Fig. 10a). This suggests
that nutrient availability is a prime control on marine diversity.”



Gould & Calloway 1980 Clams and Brachiopods-Ships That Pass in the Night. Paleobiology

“The supposed replacement of brachiopods by clams is not gradual and sequential. It is a product of one event:
the Permian extinction (which affected brachiopods profoundly and clams relatively little).”
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BIVALVES RATES BRACHIOPOD RATES
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Liow, Reitan & Harnik 2015 Ecological interactions on macroevolutionary time scales:
clams and brachiopods are more than ships that pass in the night. Ecology Letters

“Carefid—it might be a trap!”
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Granger causality via linear Stochastic Differential Equations
(SDESs)

Deterministic part Stochastic
part

dXi(t)=-o0u(X1(t)-u1)dt+o1dB1(t)

Trond Reitan Tore Schweder
University of Oslo, Norway University of Oslo, Norway



Deterministic part Stochastic
part

dXi(t)=-o0u(X1(t)-u1)dt+o1dB1(t)

X, is correlated with X

dX2(t)=-02(X2(t)-1iz) dt+ O 1-p2)05dBa(t)+p0 2dBi(t)



Deterministic part Stochastic
part

dXi(t)=-o0u(X1(t)-u1)dt+o1dB1(t)

X, is correlated with X

dX2(t)=-02(X2(t)-1iz) dt+ O 1-p2)05dBa(t)+p0 2dBi(t)

X, is driven by X

dXz(t) =Co(X2(t)-uz-B[X1(t) -u1])dt)




Link models that can be built using linear SDEs
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Hidden layers — not black magic

The hidden (bottom) layer can be found by its imprint on the observed (top)
layer.
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Clams and brachiopods are more than ships
that pass in the night

— Causal

————— Correlative

t1/2=0.1 3
origination/ $=0.42

Bivalve
extinction

Uncertain connection type

—— Uncertain origin

Hidden
process 1 . B = +0.61

Liow, Reitan & Harnik 2015 Ecology Letters

Reitan & Liow 2017 Paleobiology

Brachiopod
extinction

Climate and sea-level changes have no measurable effects

t..=37 on diversification dynamics of bivalves or brachiopods on
1/2

s=0.52 Phanerozoic time scales

Hidden
process 2

* Bivalves have been “suppressing” brachiopod diversification
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Reitan, T. and Liow, L.H. (2017) An unknown Phanerozoic driver of brachiopod extinction rates
unveiled by multivariate linear stochastic differential equations. Paleobiology DOI:
10.1017/pab.2017.11
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Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil orig 1. cheil ext 1. cheil orig 1. cheil ext

2. cyd orig 2. cyd ext 2. cycl ext 2. cyd orig

E. correlation between time series 9.4 8.3 10.2 10.5
1. cheil orig 1. cheil ext 1. cyd orig 1. cyd ext
2. proportion 2. proportion 2, proportion 2. proportion
A. no relationship between time series 349 73 444 38.2
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Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil orig 1. cheil ext 1. cheil orig 1. cheil ext
2. cycl orig 2. cyd ext 2. cycl ext 2. cyd orig
A. no relationship between time series 41.8 11.4 49.2 241
B. 1st time-series drives 2nd 10.5 22.9 114 9.8
C. 2nd time-series drives 1st 20.4 134 14.5 244
D. temporal feedback between time series 17.9 44.0 14.6 31.2
E. correlation between time series 9.4 8.3 10.2 10.5
Model D Mean | Median | Lower 5% | Upper 95%
u.cheilostome.extinction -2.126 | -2.088 -3.641 -0.605
t;/ocheilostome.extinction 30.3445 | 14.1167 0.719 136.945
o.cheilostome.extinction 0.288 0.294 0.002 0.623
w.cyclostome.extinction -2.459 | -2.527 -3.728 -0.939
t1/2-cyclostome.extinction 13710 3.474 0.460 77.983
o.cyclostome.extinction 0.195 0.152 0.002 0.6467
[ .cheilostome. extinction.to.cyclostome.extinction 0.522 0.572 -0.345 1.212
B.cyclostome.extinction.to.cheilostome.extinction 0.326 0.442 -1.017 1.315
Model B




Cheilostomes and cyclostomes are also more than ships that pass in the night

time series

1. cheil orig 1. cheil ext 1. cheil orig 1. cheil ext
2. cycl orig 2. cyd ext 2. cycl ext 2. cyd orig

A. no relationship between time series 41.8 11.4 49.2 241
B. 1st time-series drives 2nd 10.5 22.9 11.4 9.8
C. 2nd time-series drives 1st 20.4 134 14.5 244
D. temporal feedback between time series 17.9 44.0 14.6 31.2
E. correlation between time series 9.4 8.3 10.2 10.5

Model D Lower Upper

Mean | Median | 95% 95%
u.cheilostome.extinction 2482 | -2.493 -3.795 -1.070
14.67

ty/2-cheilostome.extinction 4 6.600 0.641 80.398

o.cheilostome.extinction 0.197 | 0.168 0.002 0.577

u.cyclostome. origination 2.026 -2.036 -3.268 -0.472

29.31

ty/;-cyclostome. origination 9] 18.183 0.709 121.259

o.cyclostome.origination 0.275 0.252 0.009 0.658

B.cheilostome.extinction.to.cyclostome.origina

tion 0.275 0.303 -0.915 1.185

B.cyclostome.origination.to.cheilostome.extine

tion 05/ 0 637 -0773 1314




Do tectonics regulate marine diversity at Phanerozoic time scales?
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Do tectonics regulate marine diversity at Phanerozoic time scales? - Nope

Wilson et al. 2024 unveiling the underlying drivers of Phanerozoic marine diversification (Proc B Roy Soc)
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layeranalyzer: Inferring correlative and causal connections
from time series data in R
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