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THE ESSENCE OF CAPTURE RECAPTURE APPROACHES

Day 1: caught 10 rats, put tags on them
Day 2: caught rats in the same place. 2 had your tags, but 8 didn’t

What is the capture probability?
2/10=0.2

How many rats are there in that “place?”
50

“Careful—it might be a trap!”

marked Day?2  marked Day1l

total for Day2 Estimated Total

The Lincoln—-Petersen method (Petersen—Lincoln index)



THE DATA

Time intervals

1 2 3 4 5 6 7 8
0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1
1 0 1 1 0 1 0 0
0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1
0 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 0
0 0 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 0

Liow L.H. & Nichols, J.D. 2010 Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: Capture-recapture approaches. In
Quantitative Paleobiology Short Course. Eds. Alroy J. & Hunt G. Paleontological Society pp. 81-94



DECTECTION HISTORIES

Time 1 2 |3 |4 |5 |6 |7

interval

L 0 1 1 o |0 (0 |O
M 0 |1 0 |1 1 0 |0

Encounter/detection histories
- Series of ones and zeros
- Ones are taken as true presences
- Two types of zeros
- Not sampled
- Not sampled or truly absent
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Time intervals
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Time intervals
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Time intervals
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Time intervals
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Representing detection/encounter histories

Ps |Ps [Ps |P7 | Ps Detection
probabilities

€3 (& | & [& | &7 Extinction

probabilities
eh=00101100 CJS model
Pr(eh=00101100 |\initial encounter in interval 3) =




Representing detection/encounter histories
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eh=00101100

Pr(eh=00101100 | initial encounter in interval 3) =

1-84)p5 (1-g5)ps [€6+ (1-86)(1-p7){e;+(1- €5)(1- pg)}]

Detection
probabilities

Extinction
probabilities



Representing detection/encounter histories

P4 Ps | P7 | Ps Detection
probabilities
&3 @ €& | & | &7 Extinction

probabilities

eh=00101100

Pr(eh=00101100 | initial encounter in interval 3) =

(1-g3)(1-pg) ‘85)p6 (€6 + (1-€¢)(1-p7){e;+(1- £7)(1- pg)}]



Representing detection/encounter histories

Ps | Ps @ P7 | Ps Detection

= probabilities
@ ..
€3 | € (€5)| € | €7 Extinction
probabilities

eh=00101100

Pr(eh=00101100 | initial encounter in interval 3) =

(1-£3)(1-p4) (1-g4)ps +(1-g¢)(1-p7){e;+(1- £7)(1- pg)}]



Representing detection/encounter histories
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Representing detection/encounter histories

Ps |Ps [Ps |P7 | Ps Detection
probabilities

€3 (& | & [& | &7 Extinction
probabilities

eh=00101100

Pr(eh=00101100 | initial encounter in interval 3) =

(1-£3)(1-p4) (1-g4)ps (1-€5)pg [€6 + (1-€¢)(1-p;){e;+(1- €7)(1- pg)}]

"sampling" and vital parameters are both explicit! (closer to generating process of the data)



We have detection histories — now what?

Pr(eh=00101100) =
(1-€3)(1-p4) (1-€4)p5 (1-e5)p6 [e6 + (1-€6)(1-p7){e7+(1- €7)(1- p8)}]= H1

Likelihood (parameters|data) = H,No- cases H,No. cases 4 No. cases

0001010010 10
0010001101 3
0101010100 f;
1001000000 2
0001010111 g

0011101000 No. cases



Likelihood of Detection histories

1. Estimate parameters (by maximizing the likelihood)
2. Estimate uncertainty in parameters
3. Compare models

* e.g.same or different p’s or €’s

* e.g. with or without covariates (important factors that you
think might influence p and €)

i. Akaike Information Criteria, AIC
ii. classical hypothesis testing
iii. extendable to Bayesian approaches

4. Good statistical properties



Assumptions of the CJS model

1. After initial encounters, detection/encounter probabilities are
equal for all taxa in the data/group of interest

2. After initial encounters, extinction probabilities for all taxa are
equal

3. Sampling intervals are short relative to the time over which
extinction is to be estimated

4. The fate of each taxon (with respect to extinction and
encounter) is independent of the fate of every other taxon



Assumptions of the CJS model

1. After initial encounters, detection/encounter probabilities are
equal for all taxa in the data/group of interest

* Taxon specific covariates



Assumptions of the CJS model

2. After initial encounters, extinction probabilities for all taxa are
equal

* Taxon specific covariates



Assumptions of the CJS model

3. Sampling intervals are short relative to the time over which
extinction is to be estimated

* Simulations show that this is not a big problem; other
models (e.g. robust design models, never applied in paleo)
tackle this head-on



Assumptions of the CJS model

4. The fate of each taxon (with respect to extinction and
encounter) is independent of the fate of every other taxon

* Corrections for over-dispersion

* Co-occurrence analyses



Covariate modeling

A way to include factors or variables that may be important in
explaining variation in the parameters (e.g. extinction,
sampling) you are interested in

Allows us to compare models with different [or no] covariates
(Model Comparison and Selection)

models to compare
= g(constant)p(time-varying)

= g(time-varying)p(sea-levels)



Covariate modeling via link functions

- &
logit(g;,) =log(-—"—) = iy + fix. # B3,

Taxon specific covariates
*size
*minerology
*taxonomic group



Covariate modeling via link functions

. gi t
logit(e,e) = log(-—"—) = iy + fix + Biy,)

Time specific covariates
*Duration of bin
*Sea-level
*Temperature



Covariate modeling via link functions

logit(e, ,) = log(——)
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Why Capture-Mark-Recapture (CMR) ?

* Detection probability

* Separating between
- probability of detection (given presence)
- probability of the parameters in question
(e.g. survivorship, origination, occupancy, immigration)

and derived parameters such as species richness/diversity

The probability of detection or sampling is sometimes only a nuisance but sometimes
interesting in itself.

e Covariates can be EASILY included in models for both vital parameters and
sampling/detection estimates.

» Covariates can be modeled at a variety of levels (e.g. group factors, individual traits,
temporal characteristics)



Chapters in MARK book most relevant (if not
using MARK)

* Chapter 1 (introduction)

e Chapter 4 (dipper example, but skip the MARK specific bits)

* Chapter 5 (goodness of fit —not covered in lectures but important)
e Chapter 6 (more on covariates and link functions)

* Chapter 11 (individual covariates)

* Chapter 12 (Pradel) and 13 (JS models in general)

http://www.phidot.org/software/mark/docs/book/



