Turn off powerpoint

https://www.youtube.com/watch?v=DsNJjKURSiw (first)

https://www.youtube.com/watch?v=_D0ZQPqeJkk (sequence)

Reverse time models in CMR (Pradel seniority)

Lee Hsiang Liow

Natural History Museum and Centre for Planetary Habitability, University of Oslo, Norway

15.8.2024 Thursday

Analytical Paleobiology Workshop 2024, Erlangen, Germany | © Lee Hsiang Liow

Different classes of CMR (MR) models

CJS models

- Cormack-Jolly-Seber models
- Originally "Closed-population model"
- "conditional upon the animal being released alive at first encounter, and survival and catchability refer only to these marked animals"
- Developed initially for survival rates
- Translation: we can get extinction rates if we are only interested in the taxa that entered the fossil record and are sampled at least once.

JS models

- Jolly-Seber models
- "Open-population model"
- "unmarked animals in the population have the same probability of capture as marked animals in the population, i.e., that newly captured unmarked animals are a random sample of all unmarked animals in the population"
- Developed for parameters like abundance, population growth, recruitment.
- Translation: we can get extinction rates, origination rates, taxonomic richness and we include those taxa never sampled or have never entered the fossil record.

Which class of model do you expect a greater uncertainty in estimates? Why?

Different classes of models

CJS models

- Cormack-Jolly-Seber (CJS) models
- "Closed-population model"
- http://www.phidot. org/software/mark /docs/book/pdf/ch ap3.pdf

Within each class, many different model types,

JS models

- Jolly-Seber (JS) models
- "Open-population model"
- http://www.phido t.org/software/m ark/docs/book/pd f/chap12.pdf

RD models

- Robust-design (RD) models
- Hybrid "openclosed population model"
- http://www.phido t.org/software/m ark/docs/book/pd f/chap15.pdf

with each model type, you can formulate many different specific models (e.g. time-varying, time constant, covariates)

RT models

Pr. *CJS*(01101|*release in* 2) = $\phi_2 p_3 \phi_3 (1 - p_4) \phi_4 p_5$

 ϕ_i = probablity that if alive in *i*, also alive in *i* + 1

Turn 01101 around = 10110

 γ = seniority parameter (complement of origination probability in paleo speak)

 γ_i = probablity that if alive in *i*, also alive in *i* - 1

Pr. $RT(01101|last \ capture \ in 5) = \gamma_5(1-p_4) \gamma_4 p_3 \gamma_3 p_2(1-\gamma_2 p_1)$

RT models

$$\phi_t N_t = \gamma_{t+1} N_{t+1}$$
$$E(\lambda_t) = E\left[\frac{N_{t+1}}{N_t}\right]$$
$$E(\lambda_t) = \frac{\phi_t}{\Phi_t}$$

$$E(\lambda_t) = \frac{\phi_t}{\gamma_{t+1}}$$

Pradel seniority model

The Pradel seniority (1996) model (ϕ_t , γ_t , p_t) can be reparameterized in multiple ways,

including

 (ϕ_t, λ_t, p_t) population growth rate

 (ϕ_t, f_t, p_t) , recruitment as functions of covariates, for example

Note that the POPAN; the Link-Barker and Pradel-recruitment; and the Burnham JS and Pradel-lambda formulations.

Pradel (1996): Likelihood expression to maximize

In terms of the u_i 's, n_i 's, v_i 's, and d_i 's,

$$L(\phi, p, \gamma, \mu) = \prod_{i=1}^{s} \left(\xi_{i}^{u_{i}}\right) \left(\gamma_{i}^{\sum_{ji}^{u_{j}}-\sum_{ji}^{v_{j}}}\right) \left(\mu_{i}^{n_{i}-d_{i}}\right) \\ \cdot \left[\left(1-\mu_{i}\right)^{d_{i}}\right] \left[\left(1-p_{i}(1-\mu_{i})\right)^{\sum_{j>i}^{u_{j}}}\right] \left(\chi_{i}^{v_{i}-d_{i}}\right) \\ / \left(\sum_{i=1}^{s} \xi_{i} \left\{\prod_{j=1}^{i-1} \phi_{j}(1-p_{j}(1-\mu_{j}))\right\} \left\{\prod_{j=i+1}^{s} \gamma_{j}\right\} p_{i}\right)^{\sum_{i=1}^{s}^{u_{i}}}.$$
(2)

Pradel 1996

openCR to the rescue

5.1 Non-spatial openCR models

5.1.1 Parameters and model types

Table 2. Parameter definitions and default link functions (nonspatial models)

"Translations"

Parameter	Symbol	Link Description		р	Sampling probability
р	p	logit	capture probability (recapture probability for CJS)	phi	Survival probability (1-phi is extinction probability)
phi* b	$\phi \\ b$	logit mlogit	apparent survival entry probability cf PENT in MARK	b	Similar to 1-gamma but not "scaled"
f*	f	log per capita recruitment rate	f	Per capita origination/speciation	
gamma* lambda*	$\gamma \\ \lambda$	logit log	g population growth rate (finite rate of increase) g superpopulation size number of entrants	gamma	Seniority probability (1-gamma is origination probability)
superN BN	$N \\ B_N$	log log log		lamda	Net diversification rate
N	N_j			superN	Richness of the whole "data" (including those not seen)
				BN	Number of new taxa appearning
parameter:	s marked wi	th an asteris.	k are scaled by the interval between primary sessions.		

Ν

ters marked with an asterisk are scaled by the interval between primary sessions.

Table 3. Parameters of nonspatial openCR models

Type	Alias	р	$_{\rm phi}$	b	f	gamma	lambda	superN	$_{\rm BN}$	Ν
CJS		+	+							
JSSAbCL	PLBb	+	+	+						
JSSAfCL	PLBf	+	+		+					
JSSAgCL	PLBg	+	+			+				Condi
JSSAICL	PLBI	+	+				+			
JSSAb		+	+	+				+		
JSSAf		+	+		+			+		
JSSAg		+	+			+		+		Open
JSSA1		+	+				+	+		open
JSSAB		+	+						+	
JSSAN		+	+							+

itional (closed populations)

populations, hence the estiamtes of some form of N

Number of taxa in time interval

Models with type ending in CL are of the Pradel–Link–Barker type, with aliases as shown.

https://cran.r-project.org/web/packages/openCR/vignettes/openCR-vignette.pdf

Chapters in MARK book most relevant (if not using MARK)

- Chapter 1 (introduction)
- Chapter 4 (dipper example, but skip the MARK specific bits)
- Chapter 5 (goodness of fit –not covered in lectures but important)
- Chapter 6 (more on covariates and link functions)
- Chapter 11 (individual covariates)
- Chapter 12 (Pradel) and 13 (JS models in general)
- Liow, L.H. and Nichols, J.D. (2010) Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: Capture-recapture approaches. In *Short Courses in Paleontology: Quantitative Paleobiology* (Hunt, G. and Alroy, J., eds), pp. 81–94, Paleontological Society (Supplementary has step by step for MARK if you are a windows user)

Reverse-Time (RT) models

- <u>https://projecteuclid.org/journals/statistical-science/volume-</u> <u>31/issue-2/And-the-First-One-Now-Will-Later-Be-Last/10.1214/16-</u> <u>STS546.full</u> Nice free download review paper by Jim Nichols
- <u>http://www.phidot.org/software/mark/docs/book/pdf/chap13.pdf</u> The relevant MARK book chapter